scholarly journals Development, Optimization, and Evaluation of Luliconazole Nanoemulgel for the Treatment of Fungal Infection

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nabil A. Alhakamy ◽  
Shadab Md ◽  
Md Shoaib Alam ◽  
Rasheed A. Shaik ◽  
Javed Ahmad ◽  
...  

The present study aimed to optimize luliconazole nanoemulsion using Box–Behnken statistical design, which was further incorporated into the polymeric gel of Carbopol 934. The formulation was characterized for its size, entrapment efficiency, ex vivo permeation, and mechanism of release. The size of the dispersed globules of the optimized drug-loaded nanoemulsion was found to be 17 ± 3.67 nm with a polydispersity index (PDI) less than 0.5. Although the surface charge was recorded at –9.53 ± 0.251, the stability was maintained by the polymeric matrix that prevented aggregation and coalescence of the dispersed globules. The luliconazole-nanoemulgel (LUL-NEG) was characterized for drug content analysis, viscosity, pH, and refractive index, where the results were found to be 99.06 ± 0.59%, 9.26 ± 0.08 Pa.s, 5.65 ± 0.17, and 1.31 ± 0.08, respectively. The permeation across the rat skin was found to be significantly higher with LUL-NEG when compared with LUL gel. Furthermore, the skin irritation test performed in experimental animals revealed that the blank NEG, as well as the LUL-NEG, did not produce any signs of erythema following 48 h exposure. In addition, the histopathological findings of the experimental skins reported no abnormal signs at the formulation application site. Finally, the NEG formulation was found to create a statistically significant zone of inhibition ( P  < 0.05) when compared to all other test groups. Overall, it could be summarized that the nanoemulgel approach of delivering luliconazole across the skin to treat skin fungal infections could be a promising strategy.

2014 ◽  
Vol 1061-1062 ◽  
pp. 359-368 ◽  
Author(s):  
Mei Ling Tang ◽  
Li Hua Chen ◽  
Dong Sheng Zhou ◽  
Wei Feng Zhu ◽  
Yong Mei Guan ◽  
...  

A three-factor three-level Box-Behnken design(BBD) was employed to optimize capsaicin-loaded nanoparticles(Cap-NPs), and its properties in vitro and in vivo were evaluated. Particle size, morphological characteristics, entrapment efficiency of Cap-NPs were investigated respectively by Zetasizer, H7000 TEM and HPLC. Release, skin permeation and skin irritation test were investigated on mouse and rabbits. The predicted values of Cap-NPs were 94.50±6.33% for entrapment efficiency(EE) and 170.30±7.81 nm for particle mean diameter(PMD) under optimal conditions which were 346.33 bar (homogenization pressure, X1), 4.67 min(homogenization time, X2), and 15421.42 rpm (shear rate, X3). The in vitro permeation study showed that capsaicin permeability in NPs-gel was a 2.80-fold greater flux values than conventional ointment after 24 h. Cap-NPs-gel produce no observable skin irritation in rabbits within 72h. The optimized Cap-NPs-gel would be a good candidate for transdermal delivery.


Author(s):  
Mohammad Muqtader Ahmed ◽  
Farhat Fatima ◽  
Abdul Bari Mohammed

The objective of the study was to formulate olive oil based organogels for the topical application of fluconazole (FLZ), to ensure the efficient delivery of the drug deeper in to the skin layers. Methods: Nine formulations developed by hot-melt method using olive oil, sorbitan monostearate (SMS) and FLZ. Prepared formulations characterized for macro evaluations, pH, spreadibility, viscosity, gel-sol transition, in-vitro diffusion study. Further optimized formulation evaluated for ex-vivo percutaneous permeation, in-vitro antifungal studies and stability studies by similarity index. Results: The results of evaluated parameters ensure the stability and effectiveness of the prepared olive oil based organogels. In-vitro diffusion studied reflects decrease in drug release with increase in surfactant concentration due to increase in viscosity. Moreover, ex-vivo permeation studies revealed that the permeation of FLZ was enhanced for optimized formulations (F6) as compared to the marketed gel formulation. Further, the optimized formulation exhibits the broad zone of inhibition against fungal strains in comparison to control and marketed product during in-vitro antifungal study. Conclusion: The olive oil based organogels formulation shown the enhanced permeation of FLZ from organogel network structure with good antifungal activity as compared to the marketed formulation. Henceforth, the FLZ organogel formulations could be used topically for the effective treatment of fungal infection.


2018 ◽  
Vol 50 ◽  
pp. 407-417 ◽  
Author(s):  
Helena Kandarova ◽  
Jamin A. Willoughby ◽  
Wim H. De Jong ◽  
Silvia Letasiova ◽  
Tatiana Milasova ◽  
...  

Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092385
Author(s):  
Tarek A. Ahmed ◽  
Asmaa M. S. Alay ◽  
Solomon Z. Okbazghi ◽  
Nabil A. Alhakamy

Dapoxetine (DPX) is an orally administered drug for the treatment of premature ejaculation (PE). One of the challenges of administering DPX orally as a tablet is its poor bioavailability (ie, 42%) due to extensive first-pass metabolism. Thus, it is vital to develop a new formulation and mode of delivery to achieve the unmet needs of PE treatment. In this study, an optimized DPX polymeric nanoparticle (PNP) was developed and subsequently loaded into a transdermal film. The Box–Behnken design was utilized to optimize 3 formulation factors affecting the particle size and entrapment efficiency (EE) of chitosan (CS)-alginate (ALG) PNPs. A 3-level factorial design was used to study the effect of 2 variables affecting DPX cumulative percent released and percent elongation from transdermal films loaded with DPX-PNPs. Permeation parameters were calculated following ex vivo permeation study through rat skin. Transport of the PNPs across the skin layers was investigated using a fluorescence laser microscope. Results revealed that an optimized PNPs formulation was developed with a particle size 415.94 nm and EE 37.31%. Dapoxetine was successfully entrapped in the polymeric matrix. Chitosan and ALG interacted electrostatically with the studied cross-linking agents to form a polyelectrolyte complex. The ex vivo study illustrated a sustained release profile of DPX with enhanced skin permeation from the film loaded PNPs. Moreover, the PNPs was able to penetrate deeper into skin layers. Therefore, DPX transdermal film developed in this work could be considered as a successful drug delivery with better patient compliance for the treatment of PE.


2015 ◽  
Vol 238 (2) ◽  
pp. S351-S352 ◽  
Author(s):  
H. Kandarova ◽  
J. Willoughby ◽  
W. de Jong ◽  
M. Bachelor ◽  
S. Letasiova ◽  
...  

Drug Delivery ◽  
2014 ◽  
Vol 22 (6) ◽  
pp. 731-739 ◽  
Author(s):  
Salwa Abdel Rahman ◽  
Nevine Shawky Abdelmalak ◽  
Alia Badawi ◽  
Tahany Elbayoumy ◽  
Nermeen Sabry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document