scholarly journals Deep Learning Data Privacy Protection Based on Homomorphic Encryption in AIoT

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yichuan Wang ◽  
Xiaolong Liang ◽  
Xinhong Hei ◽  
Wenjiang Ji ◽  
Lei Zhu

With the rapid development of 5G technology, its high bandwidth, high reliability, low delay, and large connection characteristics have opened up a broader application field of IoT. Moreover, AIoT (Artificial Intelligence Internet of Things) has become the new development direction of IoT. Through deep learning of real-time data provided by the Internet of Things, AI can judge user habits more accurately, make devices behave in line with user expectations, and become more intelligent, thus improving product user experience. However, in the process, there is a lot of data interaction between the edge and the cloud. Given that the shared data contain a large amount of private information, preserving information security on the shared data is an important issue that cannot be neglected. In this paper, we combine deep learning with homomorphic encryption algorithm and design a deep learning network model based on secure multiparty computing (MPC). In the whole process, we realize that the cloud only owns the encryption samples of users, and users do not own any parameters or structural information related to the model. In the experimental part, we input the encrypted Mnist and Cifar-10 datasets into the model for testing, and the results show that the classification accuracy rate of the encrypted Mnist can reach 99.21%, which is very close to the result under plaintext. The classification accuracy rate of encrypted Cifar-10 can reach 91.35%, slightly lower than the test result in plaintext and better than the existing deep learning network model that can realize data privacy protection.

Author(s):  
Ashwan A. Abdulmunem ◽  
Zinah Abdulridha Abutiheen ◽  
Hiba J. Aleqabie

Corona virus disease (COVID-19) has an incredible influence in the last few months. It causes thousands of deaths in round the world. This make a rapid research movement to deal with this new virus. As a computer science, many technical researches have been done to tackle with it by using image processing algorithms. In this work, we introduce a method based on deep learning networks to classify COVID-19 based on x-ray images. Our results are encouraging to rely on to classify the infected people from the normal. We conduct our experiments on recent dataset, Kaggle dataset of COVID-19 X-ray images and using ResNet50 deep learning network with 5 and 10 folds cross validation. The experiments results show that 5 folds gives effective results than 10 folds with accuracy rate 97.28%.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 51140-51150 ◽  
Author(s):  
Biao Jin ◽  
Dongshuo Jiang ◽  
Jinbo Xiong ◽  
Lei Chen ◽  
Qi Li

2021 ◽  
Vol 261 ◽  
pp. 01021
Author(s):  
Jiwei Li ◽  
Linsheng Li ◽  
Changlu Xu

In the field of defect recognition, deep learning technology has the advantages of strong generalization and high accuracy compared with mainstream machine learning technology. This paper proposes a deep learning network model, which first processes the self-made 3, 600 data sets, and then sends them to the built convolutional neural network model for training. The final result can effectively identify the three defects of lithium battery pole pieces. The accuracy rate is 92%. Compared with the structure of the AlexNet model, the model proposed in this paper has higher accuracy.


2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


Sign in / Sign up

Export Citation Format

Share Document