scholarly journals A Distributed Congestion Control Strategy Using Harmonic Search Algorithm in Internet of Vehicles

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Meiyu Pang ◽  
Jianing Shen ◽  
Lixiu Wu

Aiming at the diversified requirements of network application QoS (Quality of Service) in the terminal equipment of Internet of Vehicles, this paper proposes a distributed congestion control strategy based on harmony search algorithm and the Throughput Evaluation Priority Adjustment Model (TEPAM) to ensure real-time transmission of high-priority data messages related to security applications. Firstly, the channel usage rate is periodically detected and the congestion is judged; then, in order to minimize delay and delay jitter as the goal, harmony search algorithm is utilized to perform global search to obtain a better solution for the transmission range and transmission rate. Secondly, packet priority and the TEPAM are applied to indicate the sending right of each packet. The data message priority and throughput percentage factor are used to express the transmission weight of each data message. Besides, the real-time evaluation of path state in MPTCP is carried out by the batch estimation theory model, which realizes the on-demand dynamic adjustment of the network congestion time window. Finally, SUMO, MOVE, and NS2 tools are used to create a VANET-like environment to evaluate the performance of the proposed congestion control strategy. Experimental results show that the proposed method is superior to other three methods in the four indicators of average delay time, average transmission rate, number of retransmissions, and packet loss rate compared with other advanced methods.

2013 ◽  
Vol 32 (9) ◽  
pp. 2412-2417
Author(s):  
Yue-hong LI ◽  
Pin WAN ◽  
Yong-hua WANG ◽  
Jian YANG ◽  
Qin DENG

2016 ◽  
Vol 25 (4) ◽  
pp. 473-513 ◽  
Author(s):  
Salima Ouadfel ◽  
Abdelmalik Taleb-Ahmed

AbstractThresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.


Sign in / Sign up

Export Citation Format

Share Document