scholarly journals Achieving Lightweight Privacy-Preserving Image Sharing and Illegal Distributor Detection in Social IoT

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tianpeng Deng ◽  
Xuan Li ◽  
Biao Jin ◽  
Lei Chen ◽  
Jie Lin

The applications of social Internet of Things (SIoT) with large numbers of intelligent devices provide a novel way for social behaviors. Intelligent devices share images according to the groups of their specified owners. However, sharing images may cause privacy disclosure when the images are illegally distributed without owners’ permission. To tackle this issue, combining blind watermark with additive secret sharing technique, we propose a lightweight and privacy-preserving image sharing (LPIS) scheme with illegal distributor detection in SIoT. Specifically, the query user’s authentication information is embedded in two shares of the transformed encrypted image by using discrete cosine transform (DCT) and additive secret sharing technique. The robustness against attacks, such as JPEG attack and the least significant bit planes (LSBs) replacement attacks, are improved by modifying 1/8 of coefficients of the transformed image. Moreover, we adopt two edge servers to provide image storage and authentication information embedding services for reducing the operational burden of clients. As a result, the identity of the illegal distributor can be confirmed by the watermark extraction of the suspicious image. Finally, we conduct security analysis and ample experiments. The results show that LPIS is secure and robust to prevent illegal distributors from modifying images and manipulating the embedded information before unlawful sharing.

2015 ◽  
Vol 7 (2) ◽  
pp. 20-30
Author(s):  
Ali Makki Sagheer ◽  
Laith Hamid Abed

Visual Secret Sharing (VSS) is a powerful approach for protecting image sharing through unsecured computer network such as the Internet. Pixel expansion and bad image quality are the most common problems of this approach. Visual secret sharing technique is proposed for grayscale images to eliminate pixel expansion problem using image compression. The experimental results and security analysis illustrate that the proposed visual secret sharing technique leads to better results in terms of image security and quality together with pixel expansion's elimination. The obtained results showed that the accomplished image security is stronger than the security of the traditional secret sharing technique as the secret key encryption is associated with VSS approach.


2021 ◽  
Vol 71 (2) ◽  
pp. 209-221
Author(s):  
Ram Ratan ◽  
Arvind Yadav

A selective bit-plane encryption scheme was proposed for securing the transmission of image data in mobile environments with a claim that it provides a high security viz. the encryption of the four most significant bit-planes is sufficient for a high image data security. This paper presents the security analysis of the said encryption scheme and reports new important results. We perform the security analysis of the bit-level encryption by considering the normal images and their histogram equalised enhanced images. We consider different bit-plane aspects to analyse the security of the image encryption, and show that the encryption of the four most significant bit-planes is not adequate. The contents of the images can be obtained even when all the bit-planes except one least significant bit-plane are encrypted in the histogram equalised images as shown in the results. The bit-plane level security analysis seems very useful for the analysis of the bit-plane level image encryption schemes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huiyong Wang ◽  
Mingjun Luo ◽  
Yong Ding

Biometric based remote authentication has been widely deployed. However, there exist security and privacy issues to be addressed since biometric data includes sensitive information. To alleviate these concerns, we design a privacy-preserving fingerprint authentication technique based on Diffie-Hellman (D-H) key exchange and secret sharing. We employ secret sharing scheme to securely distribute fragments of critical private information around a distributed network or group, which softens the burden of the template storage center (TSC) and the users. To ensure the security of template data, the user’s original fingerprint template is stored in ciphertext format in TSC. Furthermore, the D-H key exchange protocol allows TSC and the user to encrypt the fingerprint template in each query using a random one-time key, so as to protect the user’s data privacy. Security analysis indicates that our scheme enjoys indistinguishability against chosen-plaintext attacks and user anonymity. Through experimental analysis, we demonstrate that our scheme can provide secure and accurate remote fingerprint authentication.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao-Hsin Chou ◽  
Guo-Jyun Zeng ◽  
Xing-Yu Chen ◽  
Shu-Yu Kuo

AbstractSecret sharing is a widely-used security protocol and cryptographic primitive in which all people cooperate to restore encrypted information. The characteristics of a quantum field guarantee the security of information; therefore, many researchers are interested in quantum cryptography and quantum secret sharing (QSS) is an important research topic. However, most traditional QSS methods are complex and difficult to implement. In addition, most traditional QSS schemes share classical information, not quantum information which makes them inefficient to transfer and share information. In a weighted threshold QSS method, each participant has each own weight, but assigning weights usually costs multiple quantum states. Quantum state consumption will therefore increase with the weight. It is inefficient and difficult, and therefore not able to successfully build a suitable agreement. The proposed method is the first attempt to build multiparty weighted threshold QSS method using single quantum particles combine with the Chinese remainder theorem (CRT) and phase shift operation. The proposed scheme allows each participant has its own weight and the dealer can encode a quantum state with the phase shift operation. The dividing and recovery characteristics of CRT offer a simple approach to distribute partial keys. The reversibility of phase shift operation can encode and decode the secret. The proposed weighted threshold QSS scheme presents the security analysis of external attacks and internal attacks. Furthermore, the efficiency analysis shows that our method is more efficient, flexible, and simpler to implement than traditional methods.


Author(s):  
Xuehu Yan ◽  
Lintao Liu ◽  
Longlong Li ◽  
Yuliang Lu

A secret image is split into   shares in the generation phase of secret image sharing (SIS) for a  threshold. In the recovery phase, the secret image is recovered when any   or more shares are collected, and each collected share is generally assumed to be lossless in conventional SIS during storage and transmission. However, noise will arise during real-world storage and transmission; thus, shares will experience data loss, which will also lead to data loss in the secret image being recovered. Secret image recovery in the case of lossy shares is an important issue that must be addressed in practice, which is the overall subject of this article. An SIS scheme that can recover the secret image from lossy shares is proposed in this article. First, robust SIS and its definition are introduced. Next, a robust SIS scheme for a  threshold without pixel expansion is proposed based on the Chinese remainder theorem (CRT) and error-correcting codes (ECC). By screening the random numbers, the share generation phase of the proposed robust SIS is designed to implement the error correction capability without increasing the share size. Particularly in the case of collecting noisy shares, our recovery method is to some degree robust to some noise types, such as least significant bit (LSB) noise, JPEG compression, and salt-and-pepper noise. A theoretical proof is presented, and experimental results are examined to evaluate the effectiveness of our proposed method.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 505
Author(s):  
Shuqin Zhu ◽  
Congxu Zhu

This paper analyzes the security of image encryption systems based on bit plane extraction and multi chaos. It includes a bit-level permutation for high, 4-bit planes and bit-wise XOR diffusion, and finds that the key streams in the permutation and diffusion phases are independent of the plaintext image. Therefore, the equivalent diffusion key and the equivalent permutation key can be recovered by the chosen-plaintext attack method, in which only two special plaintext images and their corresponding cipher images are used. The effectiveness and feasibility of the proposed attack algorithm is verified by a MATLAB 2015b simulation. In the experiment, all the key streams in the original algorithm are cracked through two special plaintext images and their corresponding ciphertext images. In addition, an improved algorithm is proposed. In the improved algorithm, the generation of a random sequence is related to ciphertext, which makes the encryption algorithm have the encryption effect of a “one time pad”. The encryption effect of the improved algorithm is better than that of the original encryption algorithm in the aspects of information entropy, ciphertext correlation analysis and ciphertext sensitivity analysis.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650010 ◽  
Author(s):  
P. Mohamed Fathimal ◽  
P. Arockia Jansi Rani

With our lives trundling toward a fully-digital ecosystem in break-neck speed, today’s encryption and cryptography are facing the challenge of ensuring security and future-readiness of our transactions. When such transactions involve multiple hands, transmission of such data in discrete and recoverable parts (secret shares) guarantees confidentiality. This paper’s objective is to present a foolproof way of multiple secret sharing, eliminating issues such as half-toning and degradation of visual quality of the recovered images. This [Formula: see text] out of [Formula: see text] steganography and authenticated image sharing (SAIS) scheme for multiple color images generates [Formula: see text] relevant shares with the ability to reconstruct the secret images using [Formula: see text] shares and facility to find out any move for appropriation of share cover images. The key aspects of this proposed scheme is to use simple Boolean and arithmetic operations with reduction of computational complexity from [Formula: see text] to [Formula: see text] and to share multiple images without any pixel expansion.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Hua Dai ◽  
Hui Ren ◽  
Zhiye Chen ◽  
Geng Yang ◽  
Xun Yi

Outsourcing data in clouds is adopted by more and more companies and individuals due to the profits from data sharing and parallel, elastic, and on-demand computing. However, it forces data owners to lose control of their own data, which causes privacy-preserving problems on sensitive data. Sorting is a common operation in many areas, such as machine learning, service recommendation, and data query. It is a challenge to implement privacy-preserving sorting over encrypted data without leaking privacy of sensitive data. In this paper, we propose privacy-preserving sorting algorithms which are on the basis of the logistic map. Secure comparable codes are constructed by logistic map functions, which can be utilized to compare the corresponding encrypted data items even without knowing their plaintext values. Data owners firstly encrypt their data and generate the corresponding comparable codes and then outsource them to clouds. Cloud servers are capable of sorting the outsourced encrypted data in accordance with their corresponding comparable codes by the proposed privacy-preserving sorting algorithms. Security analysis and experimental results show that the proposed algorithms can protect data privacy, while providing efficient sorting on encrypted data.


Sign in / Sign up

Export Citation Format

Share Document