scholarly journals Research on the Temperature Field and Frost Heaving Law of Massive Freezing Engineering in Coastal Strata

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chaochao Zhang ◽  
Dongwei Li ◽  
Junhao Chen ◽  
Guanren Chen ◽  
Chang Yuan ◽  
...  

In this study, based on the background of massive freezing engineering in coastal strata, the thermal physical parameters and some freezing laws of soil were obtained through soil thermal physical tests and frozen soil frost heaving tests. When the freezing temperatures were −5°C, −10°C, −15°C, and −20°C, the frost heaving rates of the soil were 0.53%, 0.95%, 1.28%, and 1.41%, and the frost heaving forces of the soil were 0.37 MPa, 0.46 MPa, 0.59 MPa, and 0.74 MPa, respectively. In the range of test conditions, the frost heaving rate and the frost heaving force of the soil increased with the decrease of the freezing temperature, and the relationship was roughly linear with the temperature. The entire cooling process could be roughly divided into three stages: active freezing stage, attenuation cooling stage, and stability stage. The range of the frozen soil expansion did not increase linearly with the decrease of the freezing temperature, and there was a limit radius for the frozen soil expansion. A three-dimensional finite element model was established to simulate the temperature field and frost heaving of the soil under the on-site working conditions. The entire frost heaving process could be roughly divided into two stages. The calculated temperature values and the frost heaving force values were compared with the on-site measured values, and the results verified that the numerical calculation could accurately reflect the temperature field and frost heaving law of the formation.

2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


2013 ◽  
Vol 336-338 ◽  
pp. 760-763
Author(s):  
Hui Yue

A short explanation of the finite element method as a powerful tool for mathematical modeling is provided, and an application using constitutive modeling of the behavior of ligaments is introduced. Few possible explanations of the role of water in ligament function are extracted from two dimensional finite element models of a classical ligament. The modeling is extended to a three dimensional finite element model for the human anterior cruciate ligament. Simulation of ligament force in pitching motion of basketball player is studied in this paper.


Sign in / Sign up

Export Citation Format

Share Document