scholarly journals Forecasting Wind Power Generation Using Artificial Neural Network: “Pawan Danawi”—A Case Study from Sri Lanka

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Amila T. Peiris ◽  
Jeevani Jayasinghe ◽  
Upaka Rathnayake

Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying the wind power potential in a particular area due to climate changes. In this sense, forecasting both wind power generation and wind power potential is essential. This paper develops artificial neural network (ANN) models to forecast wind power generation in “Pawan Danawi”, a functioning wind farm in Sri Lanka. Wind speed, wind direction, and ambient temperature of the area were used as the independent variable matrices of the developed ANN models, while the generated wind power was used as the dependent variable. The models were tested with three training algorithms, namely, Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), and Bayesian Regularization (BR) training algorithms. In addition, the model was calibrated for five validation percentages (5% to 25% in 5% intervals) under each algorithm to identify the best training algorithm with the most suitable training and validation percentages. Mean squared error (MSE), coefficient of correlation (R), root mean squared error ratio (RSR), Nash number, and BIAS were used to evaluate the performance of the developed ANN models. Results revealed that all three training algorithms produce acceptable predictions for the power generation in the Pawan Danawi wind farm with R > 0.91, MSE < 0.22, and BIAS < 1. Among them, the LM training algorithm at 70% of training and 5% of validation percentages produces the best forecasting results. The developed models can be effectively used in the prediction of wind power at the Pawan Danawi wind farm. In addition, the models can be used with the projected climatic scenarios in predicting the future wind power harvest. Furthermore, the models can acceptably be used in similar environmental and climatic conditions to identify the wind power potential of the area.

2020 ◽  
pp. 0309524X2097211
Author(s):  
Cem Özen ◽  
Umur Dinç ◽  
Ali Deniz ◽  
Haldun Karan

Forecasting of the wind speed and power generation for a wind farm has always been quite challenging and has importance in terms of balancing the electricity grid and preventing energy imbalance penalties. This study focuses on creating a hybrid model that uses both numerical weather prediction model and gradient boosting machines (GBM) for wind power generation forecast. Weather Research and Forecasting (WRF) model with a low spatial resolution is used to increase temporal resolutions of the computed new or existing variables whereas GBM is used for downscaling purposes. The results of the hybrid model have been compared with the outputs of a stand-alone WRF which is well configured in terms of physical schemes and has a high spatial resolution for Yahyalı wind farm over a complex terrain located in Turkey. Consequently, the superiority of the hybrid model in terms of both performance indicators and computational expense in detail is shown.


2017 ◽  
Vol 31 (4) ◽  
pp. 436-456 ◽  
Author(s):  
Abbas Javed ◽  
Hadi Larijani ◽  
Ali Ahmadinia ◽  
Rohinton Emmanuel

The random neural network (RNN) is a probabilitsic queueing theory-based model for artificial neural networks, and it requires the use of optimization algorithms for training. Commonly used gradient descent learning algorithms may reside in local minima, evolutionary algorithms can be also used to avoid local minima. Other techniques such as artificial bee colony (ABC), particle swarm optimization (PSO), and differential evolution algorithms also perform well in finding the global minimum but they converge slowly. The sequential quadratic programming (SQP) optimization algorithm can find the optimum neural network weights, but can also get stuck in local minima. We propose to overcome the shortcomings of these various approaches by using hybridized ABC/PSO and SQP. The resulting algorithm is shown to compare favorably with other known techniques for training the RNN. The results show that hybrid ABC learning with SQP outperforms other training algorithms in terms of mean-squared error and normalized root-mean-squared error.


Sign in / Sign up

Export Citation Format

Share Document