Application of Back Propagation Neural Network for Wind Power Generation Forecasting

Author(s):  
WenYeau Chang
2021 ◽  
Vol 19 ◽  
pp. 289-296
Author(s):  
Wei Yang ◽  
Yi Chai ◽  
Jie Zheng ◽  
Jie Liu

The seriousness of air pollution appears to be the importance of wind energy as a non-polluting energy source. Today, the use of wind power has become a trend for new countries to develop new energy sources. Wind turbines are the key equipment for converting wind energy into electrical energy, the quality of the state directly affects the efficiency of wind power generation. Therefore, how to effectively diagnose the wind turbine drive system is the guarantee of wind power generation. This paper establishes a fault diagnosis method for wind turbine drive based on vibration characteristics, by wavelet packet decomposition of vibration signals. The feature extraction is carried out and back propagation neural network is used for classification research. Finally, the simulation results show that the recognition rate is over 90%, which verify effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Amila T. Peiris ◽  
Jeevani Jayasinghe ◽  
Upaka Rathnayake

Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying the wind power potential in a particular area due to climate changes. In this sense, forecasting both wind power generation and wind power potential is essential. This paper develops artificial neural network (ANN) models to forecast wind power generation in “Pawan Danawi”, a functioning wind farm in Sri Lanka. Wind speed, wind direction, and ambient temperature of the area were used as the independent variable matrices of the developed ANN models, while the generated wind power was used as the dependent variable. The models were tested with three training algorithms, namely, Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), and Bayesian Regularization (BR) training algorithms. In addition, the model was calibrated for five validation percentages (5% to 25% in 5% intervals) under each algorithm to identify the best training algorithm with the most suitable training and validation percentages. Mean squared error (MSE), coefficient of correlation (R), root mean squared error ratio (RSR), Nash number, and BIAS were used to evaluate the performance of the developed ANN models. Results revealed that all three training algorithms produce acceptable predictions for the power generation in the Pawan Danawi wind farm with R > 0.91, MSE < 0.22, and BIAS < 1. Among them, the LM training algorithm at 70% of training and 5% of validation percentages produces the best forecasting results. The developed models can be effectively used in the prediction of wind power at the Pawan Danawi wind farm. In addition, the models can be used with the projected climatic scenarios in predicting the future wind power harvest. Furthermore, the models can acceptably be used in similar environmental and climatic conditions to identify the wind power potential of the area.


Sign in / Sign up

Export Citation Format

Share Document