scholarly journals Design of Human-Machine Interaction Interface for Autonomous Vehicles Based on Multidimensional Perceptual Context

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jin Lu ◽  
Jun Ma ◽  
Zaiyan Gong

The objective of the study is to provide guidance for automobile human-computer interface design through the research, practice, and evaluation of intelligent driving automobile human-computer interfaces. In this study, the methods of intelligent vehicle automatic cruise control function, theoretical models of the situation analysis, and a three-level information architecture are proposed and designed. During the study, interface space layout is combined with the interactive interface design. The results obtained on the basis of the proposed three levels of perception and prediction of situation awareness are combined with typical application scenarios. The information on AR-HUD and W-HUD in anterior cingulate cortex (or ACC) function is analyzed. The feasibility of the theory is verified through the design practice of information architecture design, key prototype, and typical effect diagram. The human-computer interaction interface based on situational awareness can effectively clarify the display content and process of information and improve the usability of the interface.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Li Deng ◽  
Guohua Wang

The current research on human-machine interaction interface layout focused on ergonomic analysis, while the research on aesthetics and aesthetic degree calculation of interface layout was insufficient. In order to objectively evaluate the aesthetic degree of interface layout, this paper put forward an aesthetic degree evaluation method of interface design based on Kansei engineering. Firstly, the perceptual image structure of interface aesthetic degree was analyzed from the perspective of aesthetic cognition. Six aesthetic image factors affecting interface aesthetic degree, including proportion, conciseness, order, rhythm, density, and equilibrium, were extracted by factor analysis method, and the variance contribution rate of each factor was taken as the weight. Secondly, according to the six aesthetic degree indexes, the calculation system of interface aesthetic degree was constructed, and the aesthetic degree value of aesthetic image factor was calculated by the corresponding aesthetic degree evaluation mathematical formula. Then, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was used to analyze the order of aesthetic degree superiority of design schemes, and the comprehensive aesthetic degree evaluation was carried out. Finally, the aesthetic degree evaluation of human-machine interaction interface layout of the driller’s console of an AC variable frequency drilling rig was taken as an example to verify that this method was helpful for designers to optimize the design scheme. The experimental results showed that the proposed method was feasible and effective compared with the method of paired comparison commonly used in psychophysics.


2021 ◽  
pp. 002076402199748
Author(s):  
Debanjan Banerjee ◽  
Velmarini Vasquez ◽  
Marisin Pecchio ◽  
Muralidhar L Hegde ◽  
Rao Ks Jagannatha ◽  
...  

Background: Humans are neurobiologically wired for touch receptivity. Social touch is a common and mutual way of expressing affection, care, and intimacy. From an evolutionary perspective, affiliative and affectionate touch are considered necessary for social and cognitive development throughout life-stages and across species. The emergence of the COVID-19 pandemic as a public health threat has mandated social distancing as a measure to contain the global outbreak. Travel restrictions, lockdown, and quarantine have led to separation and segregation, giving rise to social touch deprivation that might have adverse biopsychosocial consequences. Methods: Affective touch has rarely been discussed within the purview of social psychiatry. We attempted to review the neurobiological, social, and behavioural correlates of social and sexual touch, as well as the neurophysiological models involved. Results: The unmyelinated peripheral C-fibre afferents projecting to insular cortex and somatosensory areas form the prime pathway for affective touch. ‘Top-down’ modulation via the periaqueductal grey area, rostroventral medulla and sub-cortical structures, and ‘Bottom-up’ approach via the dorsal horn of the spine form the two theoretical models of ‘social touch’ system. The mu - opioid receptor (MOR) implicated in the Brain Opioid Theory of Social Attachment (BOTSA) and social neuropeptides like oxytocin and vasopressin are the primary neurochemical substrates involved. Sexual intimacy involves other neurotransmitters, with increased oxytocin activity in the limbic structures, Nucleus Accumbens, Anterior Cingulate, and Prefrontal Cortex. The discrimination and amalgamation of touch senses, their affiliative value and emotional valence in humans are based on a complex interplay between psychobiological, environmental, and personal factors. Conclusion: The neurobehavioral and emotional effects of ‘touch hunger’ and strategies to mitigate it during COVID-19 are discussed in the context of psychoneuroimmunity and stress.


Author(s):  
Liangyao Yu ◽  
Ruyue Wang

Adaptive Cruise Control (ACC) is one of Advanced Driver Assistance Systems (ADAS) which takes over vehicle longitudinal control under necessary driving scenarios. Vehicle in ACC mode automatically adjusts speed to follow the preceding vehicle based on evaluation of the surrounding traffic. ACC reduces drivers’ workload as well as improves driving safety, energy economy, and traffic flow. This article provides a comprehensive review of the researches on ACC. Firstly, an overview of ACC controller and applied control theories are introduced. Their principles and performances are discussed. Secondly, several application cases of ACC control algorithms are presented. Then validation work including simulation, Hardware-in-the-Loop (HiL) test and on-road experiment is descripted to provide ideas for testing ACC systems for different aims and fidelities. In addition, studies on human-machine interaction are also summarized in this review to provide insights on development of ACC from the perspective of users. At last, challenges and potential directions in this field is discussed, including consideration of vehicle dynamics properties, contradiction between algorithm performance and computation as well as integration of ACC to other intelligent functions on vehicles.


2021 ◽  
Vol 13 (8) ◽  
pp. 188
Author(s):  
Marianna Di Gregorio ◽  
Marco Romano ◽  
Monica Sebillo ◽  
Giuliana Vitiello ◽  
Angela Vozella

The use of Unmanned Aerial Systems, commonly called drones, is growing enormously today. Applications that can benefit from the use of fleets of drones and a related human–machine interface are emerging to ensure better performance and reliability. In particular, a fleet of drones can become a valuable tool for monitoring a wide area and transmitting relevant information to the ground control station. We present a human–machine interface for a Ground Control Station used to remotely operate a fleet of drones, in a collaborative setting, by a team of multiple operators. In such a collaborative setting, a major interface design challenge has been to maximize the Team Situation Awareness, shifting the focus from the individual operator to the entire group decision-makers. We were especially interested in testing the hypothesis that shared displays may improve the team situation awareness and hence the overall performance. The experimental study we present shows that there is no difference in performance between shared and non-shared displays. However, in trials when unexpected events occurred, teams using shared displays-maintained good performance whereas in teams using non-shared displays performance reduced. In particular, in case of unexpected situations, operators are able to safely bring more drones home, maintaining a higher level of team situational awareness.


2017 ◽  
Vol 12 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Mica R. Endsley

The concept of different levels of automation (LOAs) has been pervasive in the automation literature since its introduction by Sheridan and Verplanck. LOA taxonomies have been very useful in guiding understanding of how automation affects human cognition and performance, with several practical and theoretical benefits. Over the past several decades a wide body of research has been conducted on the impact of various LOAs on human performance, workload, and situation awareness (SA). LOA has a significant effect on operator SA and level of engagement that helps to ameliorate out-of-the-loop performance problems. Together with other aspects of system design, including adaptive automation, granularity of control, and automation interface design, LOA is a fundamental design characteristic that determines the ability of operators to provide effective oversight and interaction with system autonomy. LOA research provides a solid foundation for guiding the creation of effective human–automation interaction, which is critical for the wide range of autonomous and semiautonomous systems currently being developed across many industries.


Sign in / Sign up

Export Citation Format

Share Document