team situation awareness
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 13 (8) ◽  
pp. 188
Author(s):  
Marianna Di Gregorio ◽  
Marco Romano ◽  
Monica Sebillo ◽  
Giuliana Vitiello ◽  
Angela Vozella

The use of Unmanned Aerial Systems, commonly called drones, is growing enormously today. Applications that can benefit from the use of fleets of drones and a related human–machine interface are emerging to ensure better performance and reliability. In particular, a fleet of drones can become a valuable tool for monitoring a wide area and transmitting relevant information to the ground control station. We present a human–machine interface for a Ground Control Station used to remotely operate a fleet of drones, in a collaborative setting, by a team of multiple operators. In such a collaborative setting, a major interface design challenge has been to maximize the Team Situation Awareness, shifting the focus from the individual operator to the entire group decision-makers. We were especially interested in testing the hypothesis that shared displays may improve the team situation awareness and hence the overall performance. The experimental study we present shows that there is no difference in performance between shared and non-shared displays. However, in trials when unexpected events occurred, teams using shared displays-maintained good performance whereas in teams using non-shared displays performance reduced. In particular, in case of unexpected situations, operators are able to safely bring more drones home, maintaining a higher level of team situational awareness.


Author(s):  
Nathan J. McNeese ◽  
Mustafa Demir ◽  
Nancy J. Cooke ◽  
Manrong She

This article focuses on two fundamental human–human teamwork behaviors and seeks to understand them better in human–machine teams. Specifically, team situation awareness (TSA) and team conflict are examined in human–machine teams. There is a significant need to identify how TSA and team conflict occur during human–machine teaming, in addition to how they impact each other. In this work, we present an experiment aimed at understanding TSA and team conflict in the context of human–machine teaming in a remotely piloted aircraft system (RPAS). Three conditions were tested: (1) control: teams consisted of all humans; (2) synthetic: teams consisted of the pilot role being occupied by a computational agent based on ACT-R architecture that employed AI capabilities, with all other team roles being humans; and (3) experimenter: an experimenter playing the role of the pilot as a highly effective computational agent, with the other roles being humans. The results indicate that TSA improved over time in synthetic teams, improved and then stabilized over time in experimenter teams, and did not improve in control teams. In addition, results show that control teams had the most team conflict. Finally, in the control condition, team conflict negatively impacts TSA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kaitlyn M. Ouverson ◽  
Alec G. Ostrander ◽  
Jamiahus Walton ◽  
Adam Kohl ◽  
Stephen B. Gilbert ◽  
...  

This research assessed how the performance and team skills of three-person teams working with an Intelligent Team Tutoring System (ITTS) on a virtual military surveillance task were affected by feedback privacy, participant role, task experience, prior team experience, and teammate familiarity. Previous work in Intelligent Tutoring Systems (ITSs) has focused on outcomes for task skill training for individual learners. As research extends into intelligent tutoring for teams, both task skills and team skills are necessary for good team performance. This work includes a brief review of previous research on ITTSs, feedback, teams, and teamwork, including the recounting of two categories of a framework of teamwork performance, Communication and Cognition, which are relevant to the present study. This research examines the effects of an intelligent agent, as well as features of the team, its members, and the task being undertaken, on team communication (measured by relevant key-presses) and team situation awareness (as measured by scores on a quiz). Thirty-seven teams of three participants, each at their own computer running a multiplayer surveillance simulation, were given just-in-time private (individually delivered) or public (team-delivered) performance feedback during four 5-min trials. In the fourth trial, two of the three participants switched roles. Feedback type, teamwork experience, and teammate familiarity had no statistically significant effect on communication or team situation awareness. However, higher levels of role experience and task experience showed significant and medium-sized effects on communication performance. Results, based on performance data and structured interview responses, also revealed areas of improvement in future feedback design and a potential benchmark for feedback frequency in an action-oriented serious game-based ITTS. Among the conclusions are six design objectives for future ITTSs, establishing a foundation for future research on designing effective ITTSs that train interpersonal skills to nascent teams.


Author(s):  
Michael T. Brannick ◽  
Erica Lutrick ◽  
Carolyn Prince ◽  
Eduardo Salas

Author(s):  
Mustafa Demir ◽  
Nathan J. McNeese ◽  
Manrong She ◽  
Nancy J. Cooke

Project Overview Team Situation Awareness (TSA), which is a part of team cognition, is a critical factor that influences team effectiveness. It can be defined as getting the right information from the right person within the right amount of time, in order to overcome an unexpected event (Gorman, Cooke, Pederson, Connor, & DeJoode, 2005). TSA is developed and maintained through team interactions, allowing for the measurement of TSA based on team interaction (Cooke & Gorman, 2009). In the current study, a specific measure, Coordinated Awareness of Situation by Teams (CAST) is used (Cooke & Gorman, 2009). CAST evaluates the effectiveness and efficiency of team interaction under “roadblock” scenarios (Gorman, Cooke, & Winner, 2006). These roadblocks represent novel situations in the task and require effective team communication and coordination. Team members must assess the situation according to their own specialized role and/or resources and coordinate with other team members to overcome each separate roadblock. In this task, effective communication refers to team anticipation. That is, each team member needs to anticipate each other’s needs by pushing information rather than pulling information during the task (Demir, McNeese, & Cooke, 2017). In this study, we examined how pushing and pulling information, and CAST were associated with Team Situation Awareness (TSA) in both Human-Autonomy (HAT) and all-human teams in simulated Remotely Piloted Aircraft System (RPAS) task environment. In this research, we integrated the synthetic agent to the Cognitive Engineering Research on Team Tasks Remotely Piloted Aircraft Systems - Synthetic Task Environment (CERTT-RPAS-STE) which was designed to be both a flexible research platform and a realistic task environment with a view to researching team performance and interaction-based measures of team cognition. In the simulated CERTT testbed, there are three heterogeneous teammates who need to take good photos of each target waypoint by communicating via text-chat: (1) the navigator who creates a dynamic flight plan and provides information about the waypoints, the RPA’s airspeed, and altitude restrictions to the pilot; (2) the pilot, who controls the RPA’s heading, altitude, and airspeed, and negotiates with the photographer in order to take a good photo; and (3) the photographer, who monitors sensor equipment in order to take photographs of target waypoints and sends feedback to the other team members about the quality of the photo. This project aimed to understand how team behaviors and team performance differed between HATs and all-human teams in RPAS operations: (1) the synthetic condition—the pilot role was given to the synthetic teammate, which was an ACT-R based cognitive model (which had a limited interaction ability, see Ball et al., 2010; Demir et al., 2015); (2) the control condition—the pilot was a randomly selected human participant, just like the other two participants; and (3) the experimenter condition—one of the experimenters served as an expert pilot. Experimenter condition utilized a Wizard of Oz paradigm in which a trained experimenter (located in a separate room) used a script to imitate a synthetic teammate and communicated with participants in limited communication behaviors but pushing and pulling information in a timely manner (robust coordination). Method There were 30 teams (10 for each condition): control teams consisted of three participants randomly assigned to each role; synthetic and experimenter teams included two participants randomly assigned to the navigator and photographer roles. The experiment took place over five 40-minute missions, and the goal was to take as many “good” photos of ground targets as possible while avoiding alarms and rule violations. During each mission, teams were presented with “roadblocks” by the introduction of a new, ad hoc target waypoint. We collected several measures, but we focused on: the proportion of roadblocks overcome per mission as an outcome measure of TSA; the CAST which is a coordination sequence of team interaction across the team members (i.e. which team members share with team members their experience during the roadblock); and verbal behaviors such as pushing and pulling information. Results and discussion In this team task, effective teamwork involves anticipating the needs of teammates, which in turn means pushing information before it is requested. However, in addition to anticipation, effective coordination is also needed during roadblocks. HATs demonstrated significantly lower levels of CAST than all-human teams. These results indicate that HATs’ lack of anticipation and coordination resulted in poorer TSA performance. These findings help HATs to grow its coordination and communication methodologies. Finally, future studies might examine the relationships highlighted in this study via nonlinear measures in terms of team stability and flexibility based on their communication and coordination patterns during the novel events. HAT is here to stay but improvements to human-machine interactions must continue if we are to improve team effectiveness.


Author(s):  
Sarah Berger ◽  
Robert Henning

Communication System Cues (CSCs) were used to provide information to distributed action teams regarding the integrity of the communication system they relied upon for task work. The impact of CSCs on team performance and stress was evaluated both qualitatively and quantitatively. Fifty-nine dyadic teams of undergraduates performed three 10-min trials of a simulated firefighting task. Team members in separate sound-isolated rooms depended on microphones and headphones for all communications, and experienced 0, 2, and 4 s audio delays randomly within each trial. Qualitative findings indicated that some teams receiving CSCs took steps to mitigate the detrimental effects of delays, but quantitative analyses revealed this did not translate to improved performance or reduced stress. These results suggest that CSCs are something that distributed action teams are able to use, but further research is needed to determine how CSCs can be used more effectively and if their use benefits team situation awareness.


Sign in / Sign up

Export Citation Format

Share Document