The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus

Author(s):  
Kai Diethelm

AbstractWe generalize the classical mean value theorem of differential calculus by allowing the use of a Caputo-type fractional derivative instead of the commonly used first-order derivative. Similarly, we generalize the classical mean value theorem for integrals by allowing the corresponding fractional integral, viz. the Riemann-Liouville operator, instead of a classical (firstorder) integral. As an application of the former result we then prove a uniqueness theorem for initial value problems involving Caputo-type fractional differential operators. This theorem generalizes the classical Nagumo theorem for first-order differential equations.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1303
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

Monotonicity analysis of delta fractional sums and differences of order υ∈(0,1] on the time scale hZ are presented in this study. For this analysis, two models of discrete fractional calculus, Riemann–Liouville and Caputo, are considered. There is a relationship between the delta Riemann–Liouville fractional h-difference and delta Caputo fractional h-differences, which we find in this study. Therefore, after we solve one, we can apply the same method to the other one due to their correlation. We show that y(z) is υ-increasing on Ma+υh,h, where the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and then, we can show that y(z) is υ-increasing on Ma+υh,h, where the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) for each z∈Ma+h,h. Conversely, if y(a+υh) is greater or equal to zero and y(z) is increasing on Ma+υh,h, we show that the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and consequently, we can show that the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) on Ma,h. Furthermore, we consider some related results for strictly increasing, decreasing, and strictly decreasing cases. Finally, the fractional forward difference initial value problems and their solutions are investigated to test the mean value theorem on the time scale hZ utilizing the monotonicity results.


Filomat ◽  
2019 ◽  
Vol 33 (17) ◽  
pp. 5499-5510 ◽  
Author(s):  
Danfeng Luo ◽  
Zhiguo Luo

In this paper, we mainly consider the existence of solutions for a kind of ?-Hilfer fractional differential inclusions involving non-instantaneous impulses. Utilizing another nonlinear alternative of Leray-Schauder type, we present a new constructive result for the addressed system with the help of generalized Gronwall inequality and Lagrange mean-value theorem, and some achievements in the literature can be generalized and improved. As an application, a typical example is delineated to demonstrate the effectiveness of our theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ahmed Kajouni ◽  
Ahmed Chafiki ◽  
Khalid Hilal ◽  
Mohamed Oukessou

This paper is motivated by some papers treating the fractional derivatives. We introduce a new definition of fractional derivative which obeys classical properties including linearity, product rule, quotient rule, power rule, chain rule, Rolle’s theorem, and the mean value theorem. The definition D α f t = lim h ⟶ 0 f t + h e α − 1 t − f t / h , for all t > 0 , and α ∈ 0,1 . If α = 0 , this definition coincides to the classical definition of the first order of the function f .


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 594-612 ◽  
Author(s):  
Abdon Atangana ◽  
Emile Franc Doungmo Goufo

AbstractHumans are part of nature, and as nature existed before mankind, mathematics was created by humans with the main aim to analyze, understand and predict behaviors observed in nature. However, besides this aspect, mathematicians have introduced some laws helping them to obtain some theoretical results that may not have physical meaning or even a representation in nature. This is also the case in the field of fractional calculus in which the main aim was to capture more complex processes observed in nature. Some laws were imposed and some operators were misused, such as, for example, the Riemann–Liouville and Caputo derivatives that are power-law-based derivatives and have been used to model problems with no power law process. To solve this problem, new differential operators depicting different processes were introduced. This article aims to clarify some misunderstandings about the use of fractional differential and integral operators with non-singular kernels. Additionally, we suggest some numerical discretizations for the new differential operators to be used when dealing with initial value problems. Applications of some nature processes are provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Sheng Hu ◽  
Ravi P. Agarwal ◽  
Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-Leffler function.


2017 ◽  
Vol 17 (4) ◽  
pp. 661-678 ◽  
Author(s):  
Harbir Antil ◽  
Sören Bartels

AbstractFractional differential operators provide an attractive mathematical tool to model effects with limited regularity properties. Particular examples are image processing and phase field models in which jumps across lower dimensional subsets and sharp transitions across interfaces are of interest. The numerical solution of corresponding model problems via a spectral method is analyzed. Its efficiency and features of the model problems are illustrated by numerical experiments.


Author(s):  
Zhang Wenpeng

The main purpose of this paper is using the mean value theorem of DirichletL-functions to study the asymptotic property of a sum analogous to Dedekind sum, and give an interesting mean square value formula.


Sign in / Sign up

Export Citation Format

Share Document