scholarly journals An Inertial Accelerated Algorithm for Solving Split Feasibility Problem with Multiple Output Sets

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huijuan Jia ◽  
Shufen Liu ◽  
Yazheng Dang

The paper proposes an inertial accelerated algorithm for solving split feasibility problem with multiple output sets. To improve the feasibility, the algorithm involves computing of projections onto relaxed sets (half spaces) instead of computing onto the closed convex sets, and it does not require calculating matrix inverse. To accelerate the convergence, the algorithm adopts self-adaptive rules and incorporates inertial technique. The strong convergence is shown under some suitable conditions. In addition, some newly derived results are presented for solving the split feasibility problem and split feasibility problem with multiple output sets. Finally, numerical experiments illustrate that the algorithm converges more quickly than some existing algorithms. Our results extend and improve some methods in the literature.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guash Haile Taddele ◽  
Poom Kumam ◽  
Habib ur Rehman ◽  
Anteneh Getachew Gebrie

<p style='text-indent:20px;'>In this paper, we propose two new self-adaptive inertial relaxed <inline-formula><tex-math id="M2">\begin{document}$ CQ $\end{document}</tex-math></inline-formula> algorithms for solving the split feasibility problem with multiple output sets in the framework of real Hilbert spaces. The proposed algorithms involve computing projections onto half-spaces instead of onto the closed convex sets, and the advantage of the self-adaptive step size introduced in our algorithms is that it does not require the computation of operator norm. We establish and prove weak and strong convergence theorems for the iterative sequences generated by the introduced algorithms for solving the aforementioned problem. Moreover, we apply the new results to solve some other problems. Finally, we present some numerical examples to illustrate the implementation of our algorithms and compared them to some existing results.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Youli Yu

An explicit iterative method with self-adaptive step-sizes for solving the split feasibility problem is presented. Strong convergence theorem is provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yazheng Dang ◽  
Yan Gao

The multiple-set split feasibility problem (MSSFP), as a generalization of the split feasibility problem, is to find a point in the intersection of a family of closed convex sets in one space such that its image under a linear transformation will be in the intersection of another family of closed convex sets in the image space. Censor et al. (2005) proposed a method for solving the multiple-set split feasibility problem (MSSFP), whose efficiency depends heavily on the step size, a fixed constant related to the Lipschitz constant of∇p(x)which may be slow. In this paper, we present an accelerated algorithm by introducing an extrapolated factor to solve the multiple-set split feasibility problem. The framework encompasses the algorithm presented by Censor et al. (2005). The convergence of the method is investigated, and numerical experiments are provided to illustrate the benefits of the extrapolation.


Author(s):  
Yan Tang ◽  
Pongsakorn Sunthrayuth

In this work, we introduce a modified inertial algorithm for solving the split common null point problem without the prior knowledge of the operator norms in Banach spaces. The strong convergence theorem of our method is proved under suitable assumptions. We apply our result to the split feasibility problem, split equilibrium problem and split minimization problem. Finally, we provide some numerical experiments including compressed sensing to illustrate the performances of the proposed method. The result presented in this paper improves and generalizes many recent important results in the literature.


2020 ◽  
Vol 25 (3) ◽  
pp. 47
Author(s):  
Guash Haile Taddele ◽  
Poom Kumam ◽  
Anteneh Getachew Gebrie ◽  
Kanokwan Sitthithakerngkiet

In this paper, we study an iterative method for solving the multiple-set split feasibility problem: find a point in the intersection of a finite family of closed convex sets in one space such that its image under a linear transformation belongs to the intersection of another finite family of closed convex sets in the image space. In our result, we obtain a strongly convergent algorithm by relaxing the closed convex sets to half-spaces, using the projection onto those half-spaces and by introducing the extended form of selecting step sizes used in a relaxed CQ algorithm for solving the split feasibility problem. We also give several numerical examples for illustrating the efficiency and implementation of our algorithm in comparison with existing algorithms in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yazheng Dang ◽  
Yan Gao ◽  
Yanli Han

This paper deals with the split feasibility problem that requires to find a point closest to a closed convex set in one space such that its image under a linear transformation will be closest to another closed convex set in the image space. By combining perturbed strategy with inertial technique, we construct an inertial perturbed projection algorithm for solving the split feasibility problem. Under some suitable conditions, we show the asymptotic convergence. The results improve and extend the algorithms presented in Byrne (2002) and in Zhao and Yang (2005) and the related convergence theorem.


Sign in / Sign up

Export Citation Format

Share Document