scholarly journals Application of Design Structure Matrix to Simulate Surgical Procedures and Predict Surgery Duration

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhaoxuan Li ◽  
Derrick Tate ◽  
Thomas McGill ◽  
John Griswold ◽  
Ming-Chien Chyu

Background. The complexities of surgery require an efficient and explicit method to evaluate and standardize surgical procedures. A reliable surgical evaluation tool will be able to serve various purposes such as development of surgery training programs and improvement of surgical skills. Objectives. (a) To develop a modeling framework based on integration of dexterity analysis and design structure matrix (DSM), to be generally applicable to predict total duration of a surgical procedure, and (b) to validate the model by comparing its results with laparoscopic cholecystectomy surgery protocol. Method. A modeling framework is developed through DSM, a tool used in engineering design, systems engineering and management, to hierarchically decompose and describe relationships among individual surgical activities. Individual decomposed activities are assumed to have uncertain parameters so that a rework probability is introduced. The simulation produces a distribution of the duration of the modeled procedure. A statistical approach is then taken to evaluate surgery duration through integrated numerical parameters. The modeling framework is applied for the first time to analyze a surgery; laparoscopic cholecystectomy, a common surgical procedure, is selected for the analysis. Results. The present simulation model is validated by comparing its results of predicted surgery duration with the standard laparoscopic cholecystectomy protocols from the Atlas of Minimally Invasive Surgery with 2.5% error and that from the Atlas of Pediatric Laparoscopy and Thoracoscopy with 4% error. Conclusion. The present model, developed based on dexterity analysis and DSM, demonstrates a validated capability of predicting laparoscopic cholecystectomy surgery duration. Future studies will explore its potential applications to other surgery procedures and in improving surgeons’ performance and training novices.

Urban Science ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 28
Author(s):  
Peter Hoffmann ◽  
Yutaka Nomaguchi ◽  
Keishiro Hara ◽  
Kana Sawai ◽  
Ingenuin Gasser ◽  
...  

Modeling the urban system for urban health and well-being with the aim of finding ways to optimize the well-being of urban dwellers is a complex task. Different modeling approaches that consider specific parts of the urban system, e.g., environmental stressors, urban society, and urban morphology, need to be integrated. The conceptual model of health-related urban well-being (UrbWellth) has been constructed to provide a structure for an integrated modeling framework. However, interfaces between the different modeling approaches were not sufficiently identified until now. The challenge to specify and operationalize these interfaces is met by using the Design Structure Matrix (DSM) concept, which is widely used in design engineering. It is used here to identify necessary interfaces within the urban system by determining the relevant interface variables and processes. The conceptual model for UrbWellth is used to construct a DSM. The results of a clustering of this UrbWellth-based DSM reveal that the structure of the conceptual model is indeed suitable to serve as a basis for an integrated model. Further, a Multi-Domain DSM (MDDSM), which is an extension of the DSM based on expert knowledge from individual modelers, identified the interface variables for the integrated model components as well as the processes for which different modeling approaches need to be coordinated. Moreover, the approach based on MDDSM identified processes that are not yet covered by the available modeling approaches.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Shqipe Buzuku ◽  
Javier Farfan ◽  
Kari Harmaa ◽  
Andrzej Kraslawski ◽  
Tuomo Kässi

Design, structure, modelling, and analysis of complex systems can significantly benefit from a systematic approach. One way to address a complex system using a systematic approach is to combine creative and analytical methods, such as general morphological analysis and design structure matrix. The aim is to propose a framework to address complex systems in two stages: first, formulation and generation of alternatives through general morphological analysis, and second, improvement and integration with design structure matrix for sequence optimization and cluster analysis. Moreover, general morphological analysis is further optimized through a novel sensitivity analysis approach reducing up to 80% the iteration time. The proposed approach is showcased in a case study of sustainable policy formulation for a wastewater treatment plant at a pulp and paper industry in Brazil. The results show that it is possible to generate a solution space that highlights the best possible combinations of the given alternatives while also providing an optimal sequence and grouping for an optimized implementation. The paper contributes to the field of conceptual modelling by offering a systematic approach to integrate sustainability.


2011 ◽  
Vol 314-316 ◽  
pp. 1607-1611
Author(s):  
Zhong Wei Gong ◽  
Hai Cheng Yang ◽  
Rong Mo ◽  
Tao Chen

Engineering change is an important and complex activity for manufacturing enterprises. In order to improve the efficiency of engineering change, designers should pay different attentions to different nodes of product development network. In that case, a method of classifying the nodes was proposed. First, we proposed a method to cluster the nodes based on design structure matrix; then, we analyzed the indexes for evaluating the importance of nodes and studied the method of classifying the nodes of product development network; finally, the experiment of managing a type of motorcycle engine was employed to validate our method and it showed the correctness of the proposed method.


2016 ◽  
Vol 28 (1) ◽  
pp. 23-46 ◽  
Author(s):  
Guilherme Eduardo da Cunha Barbosa ◽  
Gilberto Francisco Martha de Souza

Sign in / Sign up

Export Citation Format

Share Document