scholarly journals Channel Estimation for Broadband Millimeter Wave MIMO Systems Based on High-Order PARALIND Model

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ting Jiang ◽  
Maozhong Song ◽  
Xiaorong Zhu ◽  
Xu Liu

Channel state information (CSI) is important to improve the performance of wireless transmission. However, the problems of high propagation path loss, multipath, and frequency selective fading make it difficult to obtain the CSI in broadband millimeter-wave (mmWave) system. Based on the inherent multidimensional structure of mmWave multipath channels and the correlation between channel dimensions, mmWave multiple input multiple output (MIMO) channels are modelled as high-order parallel profiles with linear dependence (PARALIND) model in this paper, and a new PARALIND-based channel estimation algorithm is proposed for broadband mmWave system. Due to the structural property of PARALIND model, the proposed algorithm firstly separates the multipath channels of different scatterers by PARALIND decomposition and then estimates the channel parameters from the factor matrices decomposed from the model based on their structures. Meanwhile, the performance of mmWave channel estimation is analysed theoretically. A necessary condition for channel parameter estimation is given based on the uniqueness principle of PARALIND model. Simulation results show that the proposed algorithm performs better than traditional compressive sensing-based channel estimation algorithms.

Author(s):  
Jianfeng Shao ◽  
Xianpeng Wang ◽  
Xiang Lan ◽  
Zhiguang Han ◽  
Ting Su

AbstractBased on the finite scattering characters of the millimeter-wave multiple-input multiple-output (MIMO) channel, the mmWave channel estimation problem can be considered as a sparse signal recovery problem. However, most traditional channel estimation methods depend on grid search, which may lead to considerable precision loss. To improve the channel estimation accuracy, we propose a high-precision two-stage millimeter-wave MIMO system channel estimation algorithm. Since the traditional expectation–maximization-based sparse Bayesian learning algorithm can be applied to handle this problem, it spends lots of time to calculate the E-step which needs to compute the inversion of a high-dimensional matrix. To avoid the high computation of matrix inversion, we combine damp generalized approximate message passing with the E-step in SBL. We then improve a refined algorithm to handle the dictionary matrix mismatching problem in sparse representation. Numerical simulations show that the estimation time of the proposed algorithm is greatly reduced compared with the traditional SBL algorithm and better estimation performance is obtained at the same time.


2021 ◽  
Author(s):  
Jianfeng Shao ◽  
Xianpeng Wang ◽  
Xiang Lan ◽  
Zhiguang Han ◽  
Ting Su

Abstract Based on the finite scattering characters of the millimeter-wave multiple-input multiple-output (mmWave MIMO) channel, the mmWave channel estimation problem can be considered as a sparse signal recovery problem. However, most traditional channel estimation methods depend on grid search, which may lead to considerable precision loss. To improve the channel estimation accuracy, we propose a high-precision two-stage millimeter-wave MIMO system channel estimation algorithm. Since the traditional expectation-maximization based sparse Bayesian learning (EM-SBL) algorithm can be applied to handle this problem, however, it spends lots of time to calculate the E-step which needs to compute the inversion of a high dimensional matrix. To avoid the high computation of matrix inversion, we combine damp generalized approximate message passing (DGAMP) with the E-step in SBL. We then improve a refined algorithm to handle the dictionary matrix mismatching problem in sparse representation. Numerical simulations show that the estimation time of the proposed algorithm is greatly reduced compared with the traditional SBL algorithm and better estimation performance is obtained at the same time.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 49738-49749
Author(s):  
Ting Jiang ◽  
Maozhong Song ◽  
Xuejian Zhao ◽  
Xu Liu

Author(s):  
Mohammed B. Majed ◽  
Tharek A. Rahman ◽  
Omar Abdul Aziz

The global bandwidth inadequacy facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks, and mmWave band is one of the promising candidates due to wide spectrum. This paper presents propagation path loss and outdoor coverage and link budget measurements for frequencies above 6 GHz (mm-wave bands) using directional horn antennas at the transmitter and omnidirectional antennas at the receiver. This work presents measurements showing the propagation time delay spread and path loss as a function of separation distance for different frequencies and antenna pointing angles for many types of real-world environments. The data presented here show that at 28 GHz, 38 GHz and 60 GHz, unobstructed Line of Site (LOS) channels obey free space propagation path loss while non-LOS (NLOS) channels have large multipath delay spreads and can utilize many different pointing angles to provide propagation links. At 60 GHz, there is more path loss and smaller delay spreads. Power delay profiles PDPs were measured at every individual pointing angle for each TX and RX location, and integrating each of the PDPs to obtain received power as a function of pointing angle. The result shows that the mean RMS delay spread varies between 7.2 ns and 74.4 ns for 60 GHz and 28 GHz respectively in NLOS scenario.


Author(s):  
Xu Shuang

With the explosive growth in the number of communication users and the huge demand for data from users, Limited low-frequency resources have been far from being satisfied by users. The combination of Massive MIMO technology and millimeter-wave technology has brought new hope to users. In this paper, several basic algorithms are placed under the millimeter wave large-scale antenna channel for simulation research.


2019 ◽  
Vol 8 (4) ◽  
pp. 1103-1107 ◽  
Author(s):  
Xianda Wu ◽  
Guanghua Yang ◽  
Fen Hou ◽  
Shaodan Ma

Sign in / Sign up

Export Citation Format

Share Document