scholarly journals R2AU-Net: Attention Recurrent Residual Convolutional Neural Network for Multimodal Medical Image Segmentation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qiang Zuo ◽  
Songyu Chen ◽  
Zhifang Wang

In recent years, semantic segmentation method based on deep learning provides advanced performance in medical image segmentation. As one of the typical segmentation networks, U-Net is successfully applied to multimodal medical image segmentation. A recurrent residual convolutional neural network with attention gate connection (R2AU-Net) based on U-Net is proposed in this paper. It enhances the capability of integrating contextual information by replacing basic convolutional units in U-Net by recurrent residual convolutional units. Furthermore, R2AU-Net adopts attention gates instead of the original skip connection. In this paper, the experiments are performed on three multimodal datasets: ISIC 2018, DRIVE, and public dataset used in LUNA and the Kaggle Data Science Bowl 2017. Experimental results show that R2AU-Net achieves much better performance than other improved U-Net algorithms for multimodal medical image segmentation.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Feng-Ping An ◽  
Zhi-Wen Liu

With the development of computer vision and image segmentation technology, medical image segmentation and recognition technology has become an important part of computer-aided diagnosis. The traditional image segmentation method relies on artificial means to extract and select information such as edges, colors, and textures in the image. It not only consumes considerable energy resources and people’s time but also requires certain expertise to obtain useful feature information, which no longer meets the practical application requirements of medical image segmentation and recognition. As an efficient image segmentation method, convolutional neural networks (CNNs) have been widely promoted and applied in the field of medical image segmentation. However, CNNs that rely on simple feedforward methods have not met the actual needs of the rapid development of the medical field. Thus, this paper is inspired by the feedback mechanism of the human visual cortex, and an effective feedback mechanism calculation model and operation framework is proposed, and the feedback optimization problem is presented. A new feedback convolutional neural network algorithm based on neuron screening and neuron visual information recovery is constructed. So, a medical image segmentation algorithm based on a feedback mechanism convolutional neural network is proposed. The basic idea is as follows: The model for obtaining an initial region with the segmented medical image classifies the pixel block samples in the segmented image. Then, the initial results are optimized by threshold segmentation and morphological methods to obtain accurate medical image segmentation results. Experiments show that the proposed segmentation method has not only high segmentation accuracy but also extremely high adaptive segmentation ability for various medical images. The research in this paper provides a new perspective for medical image segmentation research. It is a new attempt to explore more advanced intelligent medical image segmentation methods. It also provides technical approaches and methods for further development and improvement of adaptive medical image segmentation technology.


2021 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Isah Charles Saidu ◽  
Lehel Csató

We present a sample-efficient image segmentation method using active learning, we call it Active Bayesian UNet, or AB-UNet. This is a convolutional neural network using batch normalization and max-pool dropout. The Bayesian setup is achieved by exploiting the probabilistic extension of the dropout mechanism, leading to the possibility to use the uncertainty inherently present in the system. We set up our experiments on various medical image datasets and highlight that with a smaller annotation effort our AB-UNet leads to stable training and better generalization. Added to this, we can efficiently choose from an unlabelled dataset.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lin Teng ◽  
Hang Li ◽  
Shahid Karim

Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each group. Simulation results show that the new method can boost the segmentation accuracy. And, it has strong robustness compared with other segmentation methods.


2018 ◽  
Vol 50 ◽  
pp. 10-14 ◽  
Author(s):  
M. Vardhana ◽  
N. Arunkumar ◽  
Sunitha Lasrado ◽  
Enas Abdulhay ◽  
Gustavo Ramirez-Gonzalez

2019 ◽  
Vol 9 (8) ◽  
pp. 1705-1716
Author(s):  
Shidu Dong ◽  
Zhi Liu ◽  
Huaqiu Wang ◽  
Yihao Zhang ◽  
Shaoguo Cui

To exploit three-dimensional (3D) context information and improve 3D medical image semantic segmentation, we propose a separate 3D (S3D) convolution neural network (CNN) architecture. First, a two-dimensional (2D) CNN is used to extract the 2D features of each slice in the xy-plane of 3D medical images. Second, one-dimensional (1D) features reassembled from the 2D features in the z-axis are input into a 1D-CNN and are then classified feature-wise. Analysis shows that S3D-CNN has lower time complexity, fewer parameters and less memory space requirements than other 3D-CNNs with a similar structure. As an example, we extend the deep convolutional encoder–decoder architecture (SegNet) to S3D-SegNet for brain tumor image segmentation. We also propose a method based on priority queues and the dice loss function to address the class imbalance for medical image segmentation. The experimental results show the following: (1) S3D-SegNet extended from SegNet can improve brain tumor image segmentation. (2) The proposed imbalance accommodation method can increase the speed of training convergence and reduce the negative impact of the imbalance. (3) S3D-SegNet with the proposed imbalance accommodation method offers performance comparable to that of some state-of-the-art 3D-CNNs and experts in brain tumor image segmentation.


Sign in / Sign up

Export Citation Format

Share Document