scholarly journals Classical Theory of Linear Multistep Methods for Volterra Functional Differential Equations

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yunfei Li ◽  
Shoufu Li

Based on the linear multistep methods for ordinary differential equations (ODEs) and the canonical interpolation theory that was presented by Shoufu Li who is exactly the second author of this paper, we propose the linear multistep methods for general Volterra functional differential equations (VFDEs) and build the classical stability, consistency, and convergence theories of the methods. The methods and theories presented in this paper are applicable to nonneutral, nonstiff, and nonlinear initial value problems in ODEs, Volterra delay differential equations (VDDEs), Volterra integro-differential equations (VIDEs), Volterra delay integro-differential equations (VDIDEs), etc. At last, some numerical experiments verify the correctness of our theories.

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Clemente Cesarano ◽  
Osama Moaaz ◽  
Belgees Qaraad ◽  
Nawal A. Alshehri ◽  
Sayed K. Elagan ◽  
...  

Differential equations with delay arguments are one of the branches of functional differential equations which take into account the system’s past, allowing for more accurate and efficient future prediction. The symmetry of the equations in terms of positive and negative solutions plays a fundamental and important role in the study of oscillation. In this paper, we study the oscillatory behavior of a class of odd-order neutral delay differential equations. We establish new sufficient conditions for all solutions of such equations to be oscillatory. The obtained results improve, simplify and complement many existing results.


2021 ◽  
pp. 1-11
Author(s):  
Jian Wang ◽  
Yuanguo Zhu

Uncertain delay differential equation is a class of functional differential equations driven by Liu process. It is an important model to describe the evolution process of uncertain dynamical system. In this paper, on the one hand, the analytic expression of a class of linear uncertain delay differential equations are investigated. On the other hand, the new sufficient conditions for uncertain delay differential equations being stable in measure and in mean are presented by using retarded-type Gronwall inequality. Several examples show that our stability conditions are superior to the existing results.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Joël Blot ◽  
Mamadou I. Koné

AbstractThe aim of this paper is to give a complete proof of the formula for the resolvent of a nonautonomous linear delay functional differential equations given in the book of Hale and Verduyn Lunel [9] under the assumption alone of the continuity of the right-hand side with respect to the time,when the notion of solution is a differentiable function at each point, which satisfies the equation at each point, and when the initial value is a continuous function.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 61 ◽  
Author(s):  
Clemente Cesarano ◽  
Omar Bazighifan

In this paper, the authors obtain some new sufficient conditions for the oscillation of all solutions of the fourth order delay differential equations. Some new oscillatory criteria are obtained by using the generalized Riccati transformations and comparison technique with first order delay differential equation. Our results extend and improve many well-known results for oscillation of solutions to a class of fourth-order delay differential equations. The effectiveness of the obtained criteria is illustrated via examples.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
M. Mustafa Bahşi ◽  
Mehmet Çevik

The pantograph equation is a special type of functional differential equations with proportional delay. The present study introduces a compound technique incorporating the perturbation method with an iteration algorithm to solve numerically the delay differential equations of pantograph type. We put forward two types of algorithms, depending upon the order of derivatives in the Taylor series expansion. The crucial convenience of this method when compared with other perturbation methods is that this method does not require a small perturbation parameter. Furthermore, a relatively fast convergence of the iterations to the exact solutions and more accurate results can be achieved. Several illustrative examples are given to demonstrate the efficiency and reliability of the technique, even for nonlinear cases.


Sign in / Sign up

Export Citation Format

Share Document