scholarly journals Multiple-Symbol Detection Scheme for IEEE 802.15.4c MPSK Receivers over Slow Rayleigh Fading Channels

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Gaoyuan Zhang ◽  
Haiqiong Li ◽  
Congzheng Han ◽  
Congyu Shi ◽  
Hong Wen ◽  
...  

Although the full multiple-symbol detection (MSD) for IEEE 802.15.4c multiple phase shift keying (MPSK) receivers gives much better performance than the symbol-by-symbol detection (SBSD), its implementation complexity is extremely heavy. We propose a simple MSD scheme based on two implementation-friendly but powerful strategies. First, we find the best and second-best decisions in each symbol position with the standard SBSD procedure, and the global best decision is frozen. Second, for the remaining symbol positions, only the best and second-best symbol decisions, not all the candidates, are jointly searched by the standard MSD procedure. The simulation results indicate that the packet error rate (PER) performance of the simplified MSD scheme is almost the same as that of the full scheme. In particular, at PER of 1 × 10 − 3 , no more than 0.2 dB performance gap is observed if we just increase the observation window length N to 2. However, the number of decision metrics needed to be calculated is reduced from 256 to 2. Thus, much balance gain between implementation complexity and detection performance is achieved.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2049
Author(s):  
Congyu Shi ◽  
Gaoyuan Zhang ◽  
Haiqiong Li ◽  
Congzheng Han ◽  
Jie Tang ◽  
...  

In this work, an implementation-friendly multiple-symbol detection (MSD) scheme is proposed for the IEEE 802.15.4g offset quadrature phase shift keying (O-QPSK) receivers over the slow fading channel. The full MSD scheme presents better detection performance than the symbol-by-symbol detection (SBSD) scheme, yet its complexity increases exponentially as the observation window length increases. We introduce a simplified MSD scheme based on two powerful strategies. We first seek the optimal and suboptimal decisions in each symbol position with the standard SBSD procedure. Then, the aforementioned optimal and suboptimal decisions instead of all candidates are jointly searched with the standard MSD procedure. That is, only the most and second most reliable candidates in each symbol position are selected to participate in the final detection. The simulation results demonstrate that the new MSD scheme can achieve more encouraging energy gain than the SBSD scheme, while the high complexity of full MSD is also effectively reduced. A more legitimate compromise between detection performance and complexity is thus accomplished, which enables smart metering utility networks (SUN) nodes to achieve energy saving and maximum service life.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wasim Aftab ◽  
Muhammad Moinuddin ◽  
Muhammad Shafique Shaikh

Radial basis function (RBF) is well known to provide excellent performance in function approximation and pattern classification. The conventional RBF uses basis functions which rely on distance measures such as Gaussian kernel of Euclidean distance (ED) between feature vector and neuron’s center, and so forth. In this work, we introduce a novel RBF artificial neural network (ANN) where the basis function utilizes a linear combination of ED based Gaussian kernel and a cosine kernel where the cosine kernel computes the angle between feature and center vectors. Novelty of the proposed work relies on the fact that we have shown that there may be scenarios where the two feature vectors (FV) are more prominently distinguishable via the proposed cosine measure as compared to the conventional ED measure. We discuss adaptive symbol detection for multiple phase shift keying (MPSK) signals as a practical example to show where the angle information can be pivotal which in turn justifies our proposed RBF kernel. To corroborate our theoretical developments, we investigate the performance of the proposed RBF for the problems pertaining to three different domains. Our results show that the proposed RBF outperforms the conventional RBF by a remarkable margin.


Author(s):  
Md. Firoz Ahmed ◽  
Md. Faysal Ahmed ◽  
Abu Zafor Md. Touhidul Islam

Digital modulation increases information capacity, data security, and system availability while maintaining high communication quality. As a result, digital modulation techniques are in higher demand than analog modulation techniques due to their ability to transmit larger amounts of data. Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), and Quadrature Amplitude Modulation (QAM) are critical components of current communications systems development, particularly for broadband wireless communications. In this paper, the comparison of bit error rate performance of different modulation schemes (BPSK, QPSK, and16-QAM) and various equalization techniques such as constant modulus algorithm (CMA) and maximum likelihood sequence estimate (MLSE) for the AWGN and Rayleigh fading channels is analyzed using Simulink. BPSK outperforms QPSK and 16-QAM when compared to the other two digital modulation schemes. Among the three digital modulation schemes, BPSK is showing better performance as compared to QPSK and 16-QAM.


Author(s):  
Yves Louet ◽  
Rami Othman ◽  
Alexandre Skrzypczak

Alamouti encoding is a well-known space time block encoding technique used to improve the received signal quality in Rayleigh fading channels. In aeronautical telemetry, this encoding technique is applied to shaped offset quadrature phase shift keying tier generation (SOQPSK-TG) modulation in order to handle the two-antenna issue. It is provided for in telemetry-related IRIG standards. In this paper, we propose a unique decoding architecture for Alamouti-encoded SOQPSK-TG signals, taking advantage of pulse amplitude modulation decomposition with soft and hard outputs. We exploit this result to obtain a Viterbi algorithm (VA) for hard decoding and a soft output Viterbi algorithm (SOVA) for soft and hard decoding, with a twofold benefit: operation using one trellis structure, unlike decoders that are based on the 8-waveforms cross-correlated trellis-coded quadrature modulation (XTCQM) approximation, and very attractive bit error rate performance, as well as a complexity trade-off


1986 ◽  
Vol 23 (3) ◽  
pp. 239-244
Author(s):  
Matthew L. Luhanga

Analytical results on packet error probability for noncoherent frequency-shift-keying (NCFSK) and differential phase-shift-keying (DPSK) systems with diversity reception operating over slow Rayleigh fading channels with Gaussian noise are derived. Expressions obtained are applicable to two linear combining schemes: selection combining and maximal-ratio combining.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-39
Author(s):  
Fatima faydhe Al- Azzawi ◽  
Faeza Abas Abid ◽  
Zainab faydhe Al-Azzawi

Phase shift keying modulation approaches are widely used in the communication industry. Differential phase shift keying (DPSK) and Offset Quadrature phase shift keying (OQPSK) schemes are chosen to be investigated is multi environment channels, where both systems are designed using MATLAB Simulink and tested. Cross talk and unity of signals generated from DPSK and OQPSK are examined using Cross-correlation and auto-correlation, respectively. In this research a proposed system included improvement in bit error rate (BER) of both systems in  the additive white Gaussian Noise (AWGN) channel, by using the convolutional and block codes, by increasing the ratio of energy in the specular component to the energy in the diffuse component (k) and  the diversity order BER in the fading channels will be improved in both systems.    


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Gang Zhang ◽  
Yi man Hao ◽  
Tian qi Zhang

The major drawback of the differential chaos shift keying (DCSK) system is that equal time and energy are spent on the reference and data signal. This paper presents the design and performance analysis of a short reference multifold rate DCSK (SRMR-DCSK) system to overcome the major drawback. The SRMR-DCSK system is proposed to enhance the data rate of the short reference differential chaos shift keying (SR-DCSK) system. By recycling each reference signal in SR-DCSK, the data slot carries N bits of data and by P times. As a result, compared with SR-DCSK, the proposed system has a higher data transmission rate and evaluates the energy efficiency with respect to the conventional DCSK system. To further improve the bit-error-rate (BER) performance over Rayleigh fading channels, the multiple-input single-output SRMR-DCSK (MISO-SRMR-DCSK) is also studied. The BER expression of the proposed system is derived based on Gaussian approximation (GA), and simulations in Rayleigh fading channels are performed. Simulation results show a perfect match with the analytical expression.


Sign in / Sign up

Export Citation Format

Share Document