scholarly journals Inverse Numerical Iterative Technique for Finding all Roots of Nonlinear Equations with Engineering Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mudassir Shams ◽  
Naila Rafiq ◽  
Babar Ahmad ◽  
Nazir Ahmad Mir

We introduce here a new two-step derivate-free inverse simultaneous iterative method for estimating all roots of nonlinear equation. It is proved that convergence order of the newly constructed method is four. Lower bound of the convergence order is determined using Mathematica and verified with theoretical local convergence order of the method introduced. Some nonlinear models which are taken from physical and engineering sciences as numerical test examples to demonstrate the performance and efficiency of the newly constructed modified inverse simultaneous methods as compared to classical methods existing in literature are presented. Dynamical planes and residual graphs are drawn using MATLAB to elaborate efficiency, robustness, and authentication in its domain.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mudassir Shams ◽  
Naila Rafiq ◽  
Nasreen Kausar ◽  
Shams Forruque Ahmed ◽  
Nazir Ahmad Mir ◽  
...  

A new inverse family of the iterative method is interrogated in the present article for simultaneously estimating all distinct and multiple roots of nonlinear polynomial equations. Convergence analysis proves that the order of convergence of the newly constructed family of methods is two. The computer algebra systems CAS-Mathematica is used to determine the lower bound of convergence order, which justifies the local convergence of the newly developed method. Some nonlinear models from physics, chemistry, and engineering sciences are considered to demonstrate the performance and efficiency of the newly constructed family of inverse simultaneous methods in comparison to classical methods in the literature. The computational time in seconds and residual error graph of the inverse simultaneous methods are also presented to elaborate their convergence behavior.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 225 ◽  
Author(s):  
Cristina Amorós ◽  
Ioannis Argyros ◽  
Ruben González ◽  
Á. Magreñán ◽  
Lara Orcos ◽  
...  

The study of the dynamics and the analysis of local convergence of an iterative method, when approximating a locally unique solution of a nonlinear equation, is presented in this article. We obtain convergence using a center-Lipschitz condition where the ball radii are greater than previous studies. We investigate the dynamics of the method. To validate the theoretical results obtained, a real-world application related to chemistry is provided.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 158
Author(s):  
Ioannis K. Argyros ◽  
Stepan Shakhno ◽  
Roman Iakymchuk ◽  
Halyna Yarmola ◽  
Michael I. Argyros

We develop a local convergence of an iterative method for solving nonlinear least squares problems with operator decomposition under the classical and generalized Lipschitz conditions. We consider the case of both zero and nonzero residuals and determine their convergence orders. We use two types of Lipschitz conditions (center and restricted region conditions) to study the convergence of the method. Moreover, we obtain a larger radius of convergence and tighter error estimates than in previous works. Hence, we extend the applicability of this method under the same computational effort.


2018 ◽  
Vol 34 (1) ◽  
pp. 85-92
Author(s):  
ION PAVALOIU ◽  

We consider an Aitken-Steffensen type method in which the nodes are controlled by Newton and two-step Newton iterations. We prove a local convergence result showing the q-convergence order 7 of the iterations. Under certain supplementary conditions, we obtain monotone convergence of the iterations, providing an alternative to the usual ball attraction theorems. Numerical examples show that this method may, in some cases, have larger (possibly sided) convergence domains than other methods with similar convergence orders.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 260 ◽  
Author(s):  
Janak Sharma ◽  
Ioannis Argyros ◽  
Sunil Kumar

The convergence order of numerous iterative methods is obtained using derivatives of a higher order, although these derivatives are not involved in the methods. Therefore, these methods cannot be used to solve equations with functions that do not have such high-order derivatives, since their convergence is not guaranteed. The convergence in this paper is shown, relying only on the first derivative. That is how we expand the applicability of some popular methods.


2013 ◽  
Vol 846-847 ◽  
pp. 1274-1277
Author(s):  
Ying Peng Zhang ◽  
Li Sun

We present a fifth-order iterative method for the solution of nonlinear equation. The new method is based on two ordinary methods, which are modified Newton methods without second derivatives. Its efficiency index is 1.37973 which is better than that of Newton's method. Numerical results show the efficiency of the proposed method.


Author(s):  
Guotao Wang ◽  
Dumitru Baleanu ◽  
Lihong Zhang

AbstractBy applying the monotone iterative technique and the method of lower and upper solutions, this paper investigates the existence of extremal solutions for a class of nonlinear fractional differential equations, which involve the Riemann-Liouville fractional derivative D q x(t). A new comparison theorem is also build. At last, an example is given to illustrate our main results.


2019 ◽  
Vol 40 (4) ◽  
pp. 2473-2504 ◽  
Author(s):  
Claire Chainais-Hillairet ◽  
Maxime Herda

Abstract We are interested in the large-time behaviour of solutions to finite volume discretizations of convection–diffusion equations or systems endowed with nonhomogeneous Dirichlet- and Neumann-type boundary conditions. Our results concern various linear and nonlinear models such as Fokker–Planck equations, porous media equations or drift–diffusion systems for semiconductors. For all of these models, some relative entropy principle is satisfied and implies exponential decay to the stationary state. In this paper we show that in the framework of finite volume schemes on orthogonal meshes, a large class of two-point monotone fluxes preserves this exponential decay of the discrete solution to the discrete steady state of the scheme. This includes for instance upwind and centred convections or Scharfetter–Gummel discretizations. We illustrate our theoretical results on several numerical test cases.


2006 ◽  
Vol 182 (2) ◽  
pp. 1149-1153 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Faizan Ahmad

Sign in / Sign up

Export Citation Format

Share Document