scholarly journals Outer Synchronization of Drive-Response Complex-Valued Complex Networks via Intermittent Pinning Control

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuefei Wu ◽  
Jianwen Feng ◽  
Zhe Nie

This paper is concerned with the outer exponential synchronization of the drive-response complex dynamical networks subject to time-varying delays. The dynamics of nodes is complex valued, the interactions among of the nodes are directed, and the two coupling matrices in the drive system and the response system are also different. The intermittent pinning control is proposed to achieve outer exponential synchronization in the aperiodical way. Some novel sufficient conditions are derived to guarantee outer exponential synchronization of the considered complex-valued complex networks by using the Lyapunov functional method. Finally, two numerical examples are presented to illustrate the effectiveness of the proposed control protocols.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chen Xu ◽  
Jingyi Wang ◽  
Jianwen Feng ◽  
Yi Zhao

The synchronization problem of stochastic complex networks with Markovian switching and time-varying delays is investigated by using impulsive pinning control scheme. The complex network possesses noise perturbations, Markovian switching, and internal and outer time-varying delays. Sufficient conditions for synchronization are obtained by employing the Lyapunov-Krasovskii functional method, Itö's formula, and the linear matrix inequality (LMI). Numerical examples are also given to demonstrate the validity of the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Jingyi Wang ◽  
Chen Xu ◽  
Jianwen Feng ◽  
Man Kam Kwong ◽  
Francis Austin

This paper investigates the mean-square exponential synchronization of stochastic complex networks with Markovian switching and time-varying delays by using the pinning control method. The switching parameters are modeled by a continuous-time, finite-state Markov chain, and the complex network is subject to noise perturbations, Markovian switching, and internal and outer time-varying delays. Sufficient conditions for mean-square exponential synchronization are obtained by using the Lyapunov-Krasovskii functional, Itö’s formula, and the linear matrix inequality (LMI), and numerical examples are given to demonstrate the validity of the theoretical results.


Author(s):  
Qing Ding ◽  
Yinfang Song

This paper deals with the exponential synchronization problem of inertial Cohen–Grossberg neural networks with time-varying delays under periodically intermittent control. In light of Lyapunov–Krasovskii functional method and inequality techniques, some sufficient conditions are attained to ensure the exponential synchronization of the master-slave system on the basis of p-norm. Meanwhile, the periodically intermittent control schemes are designed. Finally, in order to verify the effectiveness of theoretical results, some numerical simulations are provided.


2013 ◽  
Vol 684 ◽  
pp. 579-582
Author(s):  
Xiang Dong Shi

The paper considers the problems of almost surely asymptotic stability for neutral stochastic neural networks with multiple time-varying delays. By applying Lyapunov functional method and differential inequality techniques, new sufficient conditions ensuring the existence and almost surely asymptotic stability of neutral stochastic neural networks with multiple time-varying delays are established. The results are shown to be generalizations of some previously published results and are less conservative than existing results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bingwen Liu ◽  
Shuhua Gong

This paper is concerned with impulsive cellular neural networks with time-varying delays in leakage terms. Without assuming bounded and monotone conditions on activation functions, we establish sufficient conditions on existence and exponential stability of periodic solutions by using Lyapunov functional method and differential inequality techniques. Our results are complement to some recent ones.


2013 ◽  
Vol 380-384 ◽  
pp. 2030-2033
Author(s):  
Zhen Cai Li ◽  
Yang Wang

This paper considers the problem of globally asymptotic stability of the recurrent neural networks with time-varying delays. A linear matrix inequality (LMI) technology and Lyapunov functional method is employed by combing the means of the nonsmooth analysis. A few new sufficient conditions and criterions were proposed to ensure the delayed recurrent neural networks are uniqueness and globally asymptotic stability of their equilibrium point. A few simulation examples are presented to demonstrate the effectiveness of the results and to improve feasibility.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ganji Huang ◽  
Shixian Luo ◽  
Linna Wei ◽  
Wuhua Chen

This paper deals with the stability of switched systems with time-varying delay. The time-varying system parameters are assumed to be norm-bounded. Based on a novel switched time-varying Lyapunov functional method, some new LMI-based sufficient conditions have been obtained to ensure the exponential stability for the uncertain switched delays systems. Finally, the proposed method is applied to a numerical example and the simulative results are also given.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianwen Feng ◽  
Sa Sheng ◽  
Ze Tang ◽  
Yi Zhao

The outer synchronization problem between two complex networks with nondelayed and time-varying delayed couplings via two different control schemes, namely, pinning control and impulsive control, is considered. Firstly, by applying pinning control to a fraction of the network nodes and using a suitable Lyapunov function, we obtain some new and useful synchronization criteria, which guarantee the outer synchronization between two complex networks. Secondly, impulsive control is added to the nodes of corresponding response network. Based on the generalized inequality about time-varying delayed different equation, the sufficient conditions for outer synchronization are derived. Finally, some examples are presented to demonstrate the effectiveness and feasibility of the results obtained in this paper.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yongkun Li ◽  
Xiaofang Meng ◽  
Yuan Ye

This paper focuses on the global exponential almost periodic synchronization of quaternion-valued neural networks with time-varying delays. By virtue of the exponential dichotomy of linear differential equations, Banach’s fixed point theorem, Lyapunov functional method, and differential inequality technique, some sufficient conditions are established for assuring the existence and global exponential synchronization of almost periodic solutions of the delayed quaternion-valued neural networks, which are completely new. Finally, we give one example with simulation to show the applicability and effectiveness of our main results.


Sign in / Sign up

Export Citation Format

Share Document