scholarly journals Raceway Defect Frequency Deviation of Full-Ceramic Ball Bearing Induced by Fit Clearance in Wide Temperature Ranges

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaotian Bai ◽  
Hao Zheng ◽  
Zinan Wang ◽  
Zhong Wang

Full-ceramic ball bearings are widely applied in wide temperature ranges due to their excellent thermal shock resistance, and the condition monitoring and fault diagnosis are mainly conducted through the spectrum analysis based on the defect frequencies. However, the outer ring has a spinning motion in the temperature-related fit clearance, which leads to the deviation of raceway defect frequencies, and is not conducive to the fault diagnosis. In this paper, the temperature-related fit clearance is considered in the dynamic model, and defects are added on the inner raceway and outer raceway. The motions of the rings are calculated and analyzed in the frequency domain, and the trends of peak frequencies with temperature are investigated. Simulation and experimental results show that the spinning speed of the outer ring increases with temperature, and the defect frequencies exhibit obvious deviation in wide temperature ranges. In a temperature range of 500 K, the defect frequencies exhibit deviations of over 3%, which is obvious in the defect frequency identification. The results provide insights on the full-ceramic ball bearing dynamics and help with the fault diagnosis and status monitoring of the relevant devices.

2002 ◽  
Vol 124 (3) ◽  
pp. 448-460 ◽  
Author(s):  
Hiroyuki Ohta ◽  
Shinya Satake

All-ceramic ball bearings with silicone nitride balls and silicone nitride rings were tested and the vibration characteristics were compared with those of hybrid ceramic ball bearings and conventional steel ball bearings. The vibration measurement results showed that the overall vibratory velocity levels of the all-ceramic ball bearings are influenced by rotational velocities, and do not change with axial loads. Under a given axial load and rotational velocity, the overall vibratory velocity level of the all-ceramic ball bearing is the lowest, and the hybrid ball bearing the highest. The frequencies of main peaks in the measured vibration spectra of the all-ceramic ball bearing are higher than the frequencies of the corresponding main peaks for the hybrid ceramic ball bearing and the steel ball bearing. To explain the main peaks, modal analysis was done and the relationship between peak and natural vibration was analyzed. The results of the analyses showed that the main peaks are caused by: (1) the mass-type natural vibration of the outer ring in the vertical direction, (2) the bending natural vibration of the outer ring in the radial direction, (3) the moment of inertia-type natural vibration of the outer ring in the angular direction, (4) the mass-type natural vibration of the outer ring in the axial direction, and (5) the bending natural vibration of the outer ring in the axial direction. We also discuss the generating mechanism of the vibration and present the calculation method of the vibration spectra. As a result, it is clear that the vibration spectra of the all-ceramic ball bearing are determined by the amplitude of the waviness of the raceways and ball surface, the mobility, and the non-linear spring constant associated with the contact between the raceways and balls.


2017 ◽  
Vol 176 ◽  
pp. 19-24 ◽  
Author(s):  
I.S. Barmanov ◽  
M.N. Ortikov

Author(s):  
Peter Gloeckner ◽  
Klaus Dullenkopf ◽  
Michael Flouros

Operating conditions in high speed mainshaft ball bearings applied in new aircraft propulsion systems require enhanced bearing designs and materials. Rotational speeds, loads, demands on higher thrust capability, and reliability have increased continuously over the last years. A consequence of these increasing operating conditions are increased bearing temperatures. A state of the art jet engine high speed ball bearing has been modified with an oil channel in the outer diameter of the bearing. This oil channel provides direct cooling of the outer ring. Rig testing under typical flight conditions has been performed to investigate the cooling efficiency of the outer ring oil channel. In this paper the experimental results including bearing temperature distribution, power dissipation, bearing oil pumping and the impact on oil mass and parasitic power loss reduction are presented.


2007 ◽  
Vol 353-358 ◽  
pp. 2632-2635
Author(s):  
Pei Yu Li ◽  
Da Peng Tan ◽  
Tao Qing Zhou ◽  
Bo Yu Lin

Aiming at some problems in the fields of industry monitoring technology (IMT) such as bad dynamic ability and poor versatility, this paper brought forward a kind of intelligent Status monitoring and Fault diagnosis Network System (SFNS) based on UPnP-Universal Plug and Play. The model for fault diagnosis network system was established according to characteristics and requirements of IMT network, and system network architecture was designed and realized by UPnP. Using embedded system technology, real-time data collection node, monitoring center node and data storage server were designed, and that supplies powerful real-time data support for SFNS. Industry fields experiments proved that this system can realize self recognition, seamless linkage and other self adapting ability, and can break through the limitation of real IP address to achieve real-time remote monitoring on line.


2015 ◽  
Vol 20 (4) ◽  
pp. 1601-1619 ◽  
Author(s):  
V. Vakharia ◽  
V. K. Gupta ◽  
P. K. Kankar

2018 ◽  
Vol 18 (4) ◽  
pp. 1092-1128 ◽  
Author(s):  
Gabriel San Martin ◽  
Enrique López Droguett ◽  
Viviane Meruane ◽  
Márcio das Chagas Moura

Sign in / Sign up

Export Citation Format

Share Document