scholarly journals Molecular Mechanism of Palmitic Acid on Myocardial Contractility in Hypertensive Rats and Its Relationship with Neural Nitric Oxide Synthase Protein in Cardiomyocytes

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Haibo Tan ◽  
Weiwei Song ◽  
Sha Liu ◽  
Qing Song ◽  
Tiangang Zhou ◽  
...  

Objective. It is aimed at investigating the mechanism of palmitic acid (PA) on myocardial contractility in hypertensive rats and its relationship with myocardial neural nitric oxide synthase (nNOS) protein. Methods. The rats were randomly divided into sham operation group and hypertensive group, with thirty rats in each group, to prepare angiotensin II-induced hypertensive model rats. The blood pressure of rats was measured by the multianimal multichannel tail cuff noninvasive blood pressure system of Kent Coda, USA. The Ionoptix single-cell contraction detection system was used to detect myocardial cells. ATP level of left ventricular cardiomyocytes was determined by luminescence method, and protein was measured by Western blot. Results. Compared with the sham group, systolic blood pressure and diastolic blood pressure were increased in the hypertensive group over 4 weeks; PA increased the contractility of left ventricular cardiomyocytes in normal rats, but not in hypertensive rats, and PA increased the intracellular ATP level of rats in the sham group but not in the hypertension group. In the hypertension group, the expression of nNOS in the cardiomyocytes was significantly increased, and specific nNOS inhibitor S-methyl-L-thiocitrulline (SMTC) was found to restore the positive inotropic effect of PA in the myocardium of the hypertension group. PA was supplemented after using CPT-1 inhibitor etomoxir (ETO); it was found that ETO inhibited the positive inotropic effect of PA on left ventricular cardiomyocytes in the sham group, and PA was supplemented after using SMTC and ETO, it was found that SMTC + ETO could inhibit the positive inotropic effect of PA on left ventricular cardiomyocytes in myocardium of hypertensive rats. Conclusion. PA could increase the contractility of healthy cardiomyocytes, but had no obvious positive effect on the cardiomyocytes of hypertensive rats, PA enhanced the contractility of cardiomyocytes by increasing ATP level in them, and the inhibitory effect of PA on myocardial contractility in hypertensive rats may be related to the increased nNOS and CPT-1 in cardiomyocytes.


1969 ◽  
Vol 47 (12) ◽  
pp. 1038-1042 ◽  
Author(s):  
M. Nahas ◽  
J. Lachapelle ◽  
G. M. Tremblay

The effect of procainamide and lidocaine on myocardial contractility was studied in an isovolumic isolated rat heart perfusion preparation following the Langendorff technique. As a measure of myocardial contractility, the left ventricular intracavitary pressure and maximum dp/dt were determined and were found to be depressed proportionately to the dose of these agents. At the same concentration, lidocaine showed a more negative inotropic effect than procainamide (although the former seems clinically innocuous at therapeutic doses). In addition, procainamide produced in about one-half of the experiments a biphasic effect characterized by a slight transitory positive inotropic effect followed by a negative inotropic effect.



2000 ◽  
Vol 522 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Gerhard Müller‐Strahl ◽  
Karin Kottenberg ◽  
Heinz‐Gerd Zimmer ◽  
Eike Noack ◽  
Georg Kojda


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Nithya Mariappan ◽  
Carrie Elks ◽  
Masudul Haque ◽  
Philip J Ebnezer ◽  
Elizabeth McIIwain ◽  
...  

The transcriptional factor, nuclear factor kappa B (NFkB) plays an important role in the regulation of cytokines. Among the cytokines, tumor necrosis factor-alpha (TNF) plays an important role in cardiovascular pathophysiology. This study was done to determine whether TNF-α blockade with etanercept (ETN) or NFkB blockade with dithiol pyrolidine thiocarbamate (PDTC) attenuate oxidative stress in the paraventricular nucleus (PVN) and contribute to neurohumoral excitation in spontaneously hypertensive rats. Method: Male 20 week old SHR rats were treated with ETN (1 mg/kg BW, sc) or PDTC (100mg/kg BW, ip) for 5 week period. Left ventricular function was measured at baseline (20 weeks) and at 25 weeks using echocardiography. Blood pressure was measured at weekly intervals throughout the study. At the end of the protocol rats were sacrificed the PVN was microdissected for the measurement of cytokines, oxidative stress markers using real time PCR (fold increase compared to WKY controls) and by immunohistochemistry. Superoxide, total reactive oxygen species and peroxynitrite were measured in the PVN and LV using electron paramagnetic resonance. Plasma norepinephrine and epinephrine an indicator of neurohumoral excitation was measured using HPLC-EC. Results: PVN data are tabulated. SHR animals had increased expression of protein and mRNA for cytokines and oxidative stress markers in the PVN and LV with increased MAP and cardiac hypertrophy when compared to WKY rats. Treatment with ETN and PDTC attenuated these increases with PDTC showing marked effect than ETN on hypertrophy and blood pressure responses. Conclusion: These findings suggest that cytokine activation in the PVN contributes to increased oxidative stress and neurohumoral excitation in hypertension.



1985 ◽  
Vol 248 (1) ◽  
pp. H8-H14
Author(s):  
R. P. Crisman ◽  
R. J. Tomanek

We tested the hypothesis that exercise training provides a stimulus that could modify the decrement in mitochondria-to-myofibril volume ratio characteristic of myocardial cells hypertrophied in response to a pressure overload. Spontaneously hypertensive rats (SHR) were trained 5 days/wk on a treadmill at 70-90% maximal VO2 between the ages of 6 and 16 wk corresponding to the development of hypertension and cardiac hypertrophy. The training program increased maximal VO2 and effected a resting bradycardia but did not alter blood pressure, left ventricular hypertrophy, or peak cardiac output. Our stereological data from electron micrographs shows that the decrement in mitochondrial volume density and the increase in myofibril volume density characteristic of SHR compared with their normotensive controls (WKY, Wistar-Kyoto rats) were reversed. Thus the relative volumes of mitochondria and myofibrils and their ratio in trained SHR were similar to those of the WKY group. The similarity was noted in myocytes from both the subepicardium and subendocardium. These data suggest that exercise training facilitates a proportional growth of energy-producing and energy-consuming organelles in SHR and that this effect is not secondary to modification of blood pressure or left ventricular mass.



Sign in / Sign up

Export Citation Format

Share Document