scholarly journals Early Fault Detection Method of Rolling Bearing Based on MCNN and GRU Network with an Attention Mechanism

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaochen Zhang ◽  
Yiwen Cong ◽  
Zhe Yuan ◽  
Tian Zhang ◽  
Xiaotian Bai

Aiming at the problem of early fault diagnosis of rolling bearing, an early fault detection method of rolling bearing based on a multiscale convolutional neural network and gated recurrent unit network with attention mechanism (MCNN-AGRU) is proposed. This method first inputs multiple time scales rolling bearing vibration signals into the convolutional neural network to train the model through multiscale data processing and then adds the gated recurrent unit network with an attention mechanism to make the model predictive. Finally, the reconstruction error between the actual value and the predicted value is used to detect the early fault. The training data of this method is only normal data. The early fault detection in the operating condition monitoring and performance degradation assessment of the rolling bearing is effectively solved. It uses a multiscale data processing method to make the features extracted by CNN more robust and uses a GRU network with an attention mechanism to make the predictive ability of this method not affected by the length of the data. Experimental results show that the MCNN-AGRU rolling bearing early fault diagnosis method proposed in this paper can effectively detect the early fault of the rolling bearing and can effectively identify the type of rolling bearing fault.

Author(s):  
Xiaoyang Zheng ◽  
Zeyu Ye ◽  
Jinliang Wu

As a key part of modern industrial machinery, there has been a lot of fault diagnosis methods for gearbox. However, traditional fault diagnosis methods suffer from dependence on prior knowledge. This paper proposed an end-to-end method based on convolutional neural network (CNN), Bidirectional gated recurrent unit (BiGRU), and Attention Mechanism. Among them, the application of BiGRU not only made perfect use of the time sequence of signal, but also saved computing resources more than the same type of networks because of the low amount of calculation. In order to verify the effectiveness and generalization performance of the proposed method, experiments are carried out on two datasets, and the accuracy is calculated by the ten-fold crossvalidation. Compared with the existing fault diagnosis methods, the experimental results show that the proposed model has higher accuracy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Defeng Lv ◽  
Huawei Wang ◽  
Changchang Che

Purpose The purpose of this study is to achieve an accurate intelligent fault diagnosis of rolling bearing. Design/methodology/approach To extract deep features of the original vibration signal and improve the generalization ability and robustness of the fault diagnosis model, this paper proposes a fault diagnosis method of rolling bearing based on multiscale convolutional neural network (MCNN) and decision fusion. The original vibration signals are normalized and matrixed to form grayscale image samples. In addition, multiscale samples can be achieved by convoluting these samples with different convolution kernels. Subsequently, MCNN is constructed for fault diagnosis. The results of MCNN are put into a data fusion model to obtain comprehensive fault diagnosis results. Findings The bearing data sets with multiple multivariate time series are used to testify the effectiveness of the proposed method. The proposed model can achieve 99.8% accuracy of fault diagnosis. Based on MCNN and decision fusion, the accuracy can be improved by 0.7%–3.4% compared with other models. Originality/value The proposed model can extract deep general features of vibration signals by MCNN and obtained robust fault diagnosis results based on the decision fusion model. For a long time series of vibration signals with noise, the proposed model can still achieve accurate fault diagnosis.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2458 ◽  
Author(s):  
Zhuozheng Wang ◽  
Yingjie Dong ◽  
Wei Liu ◽  
Zhuo Ma

The safety of an Internet Data Center (IDC) is directly determined by the reliability and stability of its chiller system. Thus, combined with deep learning technology, an innovative hybrid fault diagnosis approach (1D-CNN_GRU) based on the time-series sequences is proposed in this study for the chiller system using 1-Dimensional Convolutional Neural Network (1D-CNN) and Gated Recurrent Unit (GRU). Firstly, 1D-CNN is applied to automatically extract the local abstract features of the sensor sequence data. Secondly, GRU with long and short term memory characteristics is applied to capture the global features, as well as the dynamic information of the sequence. Moreover, batch normalization and dropout are introduced to accelerate network training and address the overfitting issue. The effectiveness and reliability of the proposed hybrid algorithm are assessed on the RP-1043 dataset; based on the experimental results, 1D-CNN_GRU displays the best performance compared with the other state-of-the-art algorithms. Further, the experimental results reveal that 1D-CNN_GRU has a superior identification rate for minor faults.


Sign in / Sign up

Export Citation Format

Share Document