scholarly journals A Novel Hyperchaotic Image Encryption System Based on Particle Swarm Optimization Algorithm and Cellular Automata

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jie Zeng ◽  
Chunhua Wang

In this paper, we propose a hyperchaotic image encryption system based on particle swarm optimization algorithm (PSO) and cellular automata (CA). Firstly, to improve the ability to resist plaintext attacks, the initial conditions of the hyperchaotic system are generated by the hash function value which is closely related to the plaintext image to be encrypted. In addition, the fitness of PSO is the correlation coefficient between adjacent pixels of the image. Moreover, On the basis of hyperchaotic system, cellular automata technology is adopted, which can enhance the randomness of population distribution and increase the complexity and diversity of the population so that the security of the encryption system can be improved and avoid falling into local optimum. The simulation results and security analysis of the proposed encryption system demonstrate that the hyperchaotic image encryption system has high resistance against plaintext attack and statistical attack.

2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


2018 ◽  
Vol 173 ◽  
pp. 02016
Author(s):  
Jin Liang ◽  
Wang Yongzhi ◽  
Bao Xiaodong

The common method of power load forecasting is the least squares support vector machine, but this method is very dependent on the selection of parameters. Particle swarm optimization algorithm is an algorithm suitable for optimizing the selection of support vector parameters, but it is easy to fall into the local optimum. In this paper, we propose a new particle swarm optimization algorithm, it uses non-linear inertial factor change that is used to optimize the algorithm least squares support vector machine to avoid falling into the local optimum. It aims to make the prediction accuracy of the algorithm reach the highest. The experimental results show this method is correct and effective.


2011 ◽  
Vol 308-310 ◽  
pp. 1099-1105 ◽  
Author(s):  
Hui Fan

Based the defects of global optimal model falling into local optimum easily and local model with slow convergence speed during traditional PSO algorithm solving a complex high-dimensional and multi-peak function, a two sub-swarms particle optimization algorithm is proposed. All particles are divided into two equivalent parts. One part particles adopts global evolution model, while the other part uses local evolution model. If the global optimal fitness of the whole population stagnates for some iteration, a golden rule is introduced into local evolution model. This strategy can substitute the partial perfect particles of local evolution for the equivalent worse particles of global evolution model. So, some particles with advantage are joined into the whole population to make the algorithm keep active all the time. Compared with classic PSO and PSO-GL(A dynamic global and local combined particle swarm optimization algorithm, PSO-GL), the results show that the proposed PSO in this paper can get more effective performance over the other two algorithm in the simulation experiment for four benchmark testing function.


2013 ◽  
Vol 631-632 ◽  
pp. 1324-1329
Author(s):  
Shao Rong Huang

To improve the performance of standard particle swarm optimization algorithm that is easily trapped in local optimum, based on analyzing and comparing with all kinds of algorithm parameter settings strategy, this paper proposed a novel particle swarm optimization algorithm which the inertia weight (ω) and acceleration coefficients (c1 and c2) are generated as random numbers within a certain range in each iteration process. The experimental results show that the new method is valid with a high precision and a fast convergence rate.


Author(s):  
Yuhong Chi ◽  
Fuchun Sun ◽  
Langfan Jiang ◽  
Chunyang Yu ◽  
Chunli Chen

To control particles to fly inside the limited search space and deal with the problems of slow search speed and premature convergence of particle swarm optimization algorithm, this paper applies the theory of topology, and proposed a quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism. In QsaBC, Search space-zoomed factor and Attractor are introduced according to the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions are selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can achieve the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective with errant particles, and has easier calculation and better robustness than other methods.


2012 ◽  
Vol 532-533 ◽  
pp. 1664-1669 ◽  
Author(s):  
Jun Li Zhang ◽  
Da Wei Dai

For the purpose of overcoming the premature property and low execution efficiency of the Particle Swarm Optimization (PSO) algorithm, this paper presents a particle swarm optimization algorithm based on the pattern search. In this algorithm, personal and global optimum particles are chosen in every iteration by a probability. Then, local optimization will be performed by the pattern search and then the original individuals will be replaced. The strong local search function of the pattern search provides an effective mechanism for the PSO algorithm to escape from the local optimum, which avoids prematurity of the algorithm. Simulation shows that this algorithm features a stronger function of global search than conventional PSO, so that the optimization process can be improved remarkably.


Author(s):  
Jaouher Chrouta ◽  
Fethi Farhani ◽  
Abderrahmen Zaafouri

In the present study, we suggest a modified version of heterogeneous multi-swarm particle swarm optimization (MSPSO) algorithm, that allows the amelioration of its performance by introducing an adaptive inertia weight approach. In order to bring about a balance between the exploration and exploitation characteristics of MSPSO allowing to promote information exchange amongst the subswarms. However, the classical MSPSO algorithm search behavior has not always been optimal in finding the optimal solution to certain problems, which results in falling into local optimum leading to premature convergence. The most advantages of the MSPSO there are easy to implement and there are few parameters to adjust. The inertia weight (w) is one of the most Particle Swarm Optimization’s (PSO) parameters. Controlling this parameter could facilitate the convergence and prevent an explosion of the swarm. To overcome the above limitations, this paper proposes a heterogeneous multi swarm PSO algorithm based on PSO number selection approach centred on the idea of particle swarm referred to as Multi-Swarm Particle Swarm Optimization algorithm with Factor selection strategy (FMSPSO). In the various process implementations of the particle swarm search, different parameter selection strategies are adopted to ameliorate the global search ability. The proposed FMSPSO is able to improve the population’s diversity and better explore the entire feature space. The statistical test and indicators that are reported in the specialized literature demonstrate that the suggested approach is superior in terms of efficiency to nine other popular PSO algorithms in solving the optimization problem of complex problems. The approach suggests that FMSPSO reaches a very promising performance for solving different types of optimization problems, leading eventually to higher solution accuracy.


Author(s):  
Yuhong Chi ◽  
Fuchun Sun ◽  
Langfan Jiang ◽  
Chunyang Yu ◽  
Chunli Chen

To control particles to fly inside the limited search space and deal with the problems of slow search speed and premature convergence of particle swarm optimization algorithm, this paper applies the theory of topology, and proposed a quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism. In QsaBC, Search space-zoomed factor and Attractor are introduced according to the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions are selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can achieve the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective with errant particles, and has easier calculation and better robustness than other methods.


Sign in / Sign up

Export Citation Format

Share Document