scholarly journals Popular Song Composition Based on Deep Learning and Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jun Kuang ◽  
Tingfeng Yang

For the general public, composition appears to be professional and the threshold is relatively high. However, automatic composition can improve this problem, allowing more ordinary people to participate in the composition, especially popular music composition, so the music becomes more entertaining, and its randomness can also inspire professionals. This article combines deep learning to extract note features from the demonstration audio and builds a neural network model to complete the composition of popular music. The main work of this paper is as follows. First, we extract the characteristic notes, draw on the design process of mel-frequency cepstral coefficient extraction, and combine the characteristics of piano music signals to extract the note characteristics of the demonstration music. Then, the neural network model is constructed, using the memory function of the cyclic neural network and the characteristics of processing sequence data, the piano notes are combined into a sequence according to the musical theory rules, and the neural network model automatically learns this rule and then generates the note sequence. Finally, the ideal popular piano music scores are divided into online music lover scores and offline professional ratings. The score index is obtained, and each index is weighted by the entropy weight method.

2020 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background: Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located.Methods: A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results: Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions.Conclusions: This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


2020 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located. Methods A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions. Conclusions This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lifei Wang ◽  
Xuexia Miao ◽  
Rui Nie ◽  
Zhang Zhang ◽  
Jiang Zhang ◽  
...  

The latest progresses of experimental biology have generated a large number of data with different formats and lengths. Deep learning is an ideal tool to deal with complex datasets, but its inherent “black box” nature needs more interpretability. At the same time, traditional interpretable machine learning methods, such as linear regression or random forest, could only deal with numerical features instead of modular features often encountered in the biological field. Here, we present MultiCapsNet (https://github.com/wanglf19/MultiCapsNet), a new deep learning model built on CapsNet and scCapsNet, which possesses the merits such as easy data integration and high model interpretability. To demonstrate the ability of this model as an interpretable classifier to deal with modular inputs, we test MultiCapsNet on three datasets with different data type and application scenarios. Firstly, on the labeled variant call dataset, MultiCapsNet shows a similar classification performance with neural network model, and provides importance scores for data sources directly without an extra importance determination step required by the neural network model. The importance scores generated by these two models are highly correlated. Secondly, on single cell RNA sequence (scRNA-seq) dataset, MultiCapsNet integrates information about protein-protein interaction (PPI), and protein-DNA interaction (PDI). The classification accuracy of MultiCapsNet is comparable to the neural network and random forest model. Meanwhile, MultiCapsNet reveals how each transcription factor (TF) or PPI cluster node contributes to classification of cell type. Thirdly, we made a comparison between MultiCapsNet and SCENIC. The results show several cell type relevant TFs identified by both methods, further proving the validity and interpretability of the MultiCapsNet.


Connectivity ◽  
2020 ◽  
Vol 148 (6) ◽  
Author(s):  
B. V. Shefkin ◽  
◽  
I. V. Krasyuk ◽  
V. O. Khomenchuk ◽  
K. P. Storchak ◽  
...  

TensorFlow is Google’s open-source machine learning and deep learning framework, which is convenient and flexible to build the current mainstream deep learning model. Convolutional neural network is a classical model of deep learning, the advantage lies in its powerful feature extraction capabilities of convolutional blocks. A neural network in the simplest case is a mathematical model consisting of several layers of elements that perform parallel calculations. Initially, such an architecture was created by analogy with the small computing elements of the human brain — neurons. The minimal computing elements of an artificial neural network are also called neurons. Neural networks typically consist of three or more layers: an input layer, a hidden layer (or layers), and an output layer. An important feature of the neural network is its ability to learn by example, this is called learning with a teacher. The neural network is trained on a large number of examples consisting of input-output pairs (corresponding to each other input and output). In object recognition problems, such a pair will be the input image and the corresponding label — the name of the object. Neural network learning is an iterative process that reduces the deviation of the network output from a given «teacher response» — a label that corresponds to a given image. This process consists of steps called epochs of learning (they are usually calculated in thousands), each of which is the adjustment of the «weights» of the neural network — the parameters of the hidden layers of the network. Upon completion of the learning process, the quality of the neural network is usually good enough to perform the task for which it was trained, although the optimal set of parameters that perfectly recognizes all the images, it is often impossible to choose. Based on the TensorFlow platform, a convolutional neural network model with two-convolution-layers was built. The model was trained and tested with the MNIST data set. The test accuracy rate could reach 99,15%, and compared with the rate of 98,69% with only one-convolution-layer model, which shows that the two-convolution-layers convolutional neural network model has a better ability of feature extraction and classification decision-making.


2019 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located. Methods A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions. Conclusions This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


Sign in / Sign up

Export Citation Format

Share Document