Estimating Traffic Volume on Minor Roads at Rural Stop-Controlled Intersections using Deep Learning

Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.

2021 ◽  
Vol 13 (2) ◽  
pp. 777
Author(s):  
Irena Ištoka Otković ◽  
Aleksandra Deluka-Tibljaš ◽  
Sanja Šurdonja ◽  
Tiziana Campisi

Modeling the behavior of pedestrians is an important tool in the analysis of their behavior and consequently ensuring the safety of pedestrian traffic. Children pedestrians show specific traffic behavior which is related to cognitive development, and the parameters that affect their traffic behavior are very different. The aim of this paper is to develop a model of the children-pedestrian’s speed at a signalized pedestrian crosswalk. For the same set of data collected in the city of Osijek—Croatia, two models were developed based on neural network and multiple linear regression. In both cases the models are based on 300 data of measured children speed at signalized pedestrian crosswalks on primary city roads located near a primary school. As parameters, both models include the selected traffic infrastructure features and children’s characteristics and their movements. The models are validated on data collected on the same type of pedestrian crosswalks, using the same methodology in two other urban environments—the city of Rijeka, Croatia and Enna in Italy. It was shown that the neural network model, developed for Osijek, can be applied with sufficient reliability to the other two cities, while the multiple linear regression model is applicable with relatively satisfactory reliability only in Rijeka. A comparative analysis of the statistical indicators of reliability of these two models showed that better results are achieved by the neural network model.


2019 ◽  
Vol 8 (4) ◽  
pp. 5023-5031

Forecasting and prediction are based on pattern recognition. It may be a human energy potential increase day today when he grownup a young guy, but afterward, his energy potential going downwards. So, we observed the pattern with the help of neural network models; these are radical bias function (RBP) and back-propagation (BP). Utilizing the neural network model, it also has many classification parts like a deep neural network, feedforward neural network, recurrent neural network, convolutional neural network and many more. In the forecasting or prediction, we have a large amount of data to manage. We trained the data with algorithm and here we also use the neural network models. We used optimization techniques that are inspired by biological swarm. Nowadays, lots of data generate day by day like market, medical, education, automobile, etc. we need recognition of the pattern for prediction of future expectations. That expectation of prediction very helpful and needy to gain profit of human beings. In this work, we use SOM (self-Organized Map), RBF (Radical Bias Function), DNN (Deep Neural Network) and PGO (Plant Grow Optimization). The total data point for the processing used 27500. The evaluation of the performance used standard parameters such as ET, MAE, MSE, RMSE and MI. The proposed algorithm implemented in MATLAB software. The cascaded neural network classifier is the combination of the SOM and RBF neural network models. The SOM neural network model proceeds the task of clustering and RBF neural network model used for prediction.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5668
Author(s):  
Yan-Cheng Hsu ◽  
Yung-Hui Li ◽  
Ching-Chun Chang ◽  
Latifa Nabila Harfiya

Due to the growing public awareness of cardiovascular disease (CVD), blood pressure (BP) estimation models have been developed based on physiological parameters extracted from both electrocardiograms (ECGs) and photoplethysmograms (PPGs). Still, in order to enhance the usability as well as reduce the sensor cost, researchers endeavor to establish a generalized BP estimation model using only PPG signals. In this paper, we propose a deep neural network model capable of extracting 32 features exclusively from PPG signals for BP estimation. The effectiveness and accuracy of our proposed model was evaluated by the root mean square error (RMSE), mean absolute error (MAE), the Association for the Advancement of Medical Instrumentation (AAMI) standard and the British Hypertension Society (BHS) standard. Experimental results showed that the RMSEs in systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 4.643 mmHg and 3.307 mmHg, respectively, across 9000 subjects, with 80.63% of absolute errors among estimated SBP records lower than 5 mmHg and 90.19% of absolute errors among estimated DBP records lower than 5 mmHg. We demonstrated that our proposed model has remarkably high accuracy on the largest BP database found in the literature, which shows its effectiveness compared to some prior works.


Author(s):  
Lili Zhao

Abstract   Restricted mean survival time (RMST) is a useful summary measurement of the time-to-event data, and it has attracted great attention for its straightforward clinical interpretation. In this article, I propose a deep neural network model that directly relates the RMST to its baseline covariates for simultaneous prediction of RSMT at multiple times. Each subject’s survival time is transformed into a series of jackknife pseudo observations and then used as quantitative response variables in a deep neural network model. By using the pseudo values, a complex survival analysis is reduced to a standard regression problem, which greatly simplifies the neural network construction. By jointly modelling RMST at multiple times, the neural network model gains prediction accuracy by information sharing across times. The proposed network model was evaluated by extensive simulation studies and was further illustrated on three real datasets. In real data analyses, I also used methods to open the blackbox by identifying subject-specific predictors and their importance in contributing to the risk prediction. Availability and implementation The source code is freely available at http://github.com/lilizhaoUM/DnnRMST Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 602-605 ◽  
pp. 3239-3242
Author(s):  
Mao Liu

With the rapid development of engineering construction and gradual introduction of the bidding system, project cost estimation model continues to deepen. How to estimate engineering cost fast and accurately become one of the hot topics currently. In this paper, the characteristics of large-scale water project investment risk is combined to establish a neural network model suited for large-scale water project cost, through quantitating the main features of each category of water conservancy and combining neural network model established to quickly estimate water project cost with the toolbox. After engineering examples show that it is a fast and reliable water project cost estimation method.


Author(s):  
Ke Xu ◽  
Xiaoxiao Liu ◽  
Yiming Lei ◽  
Hong Qi ◽  
Chun Zhang

Abstract Background Appropriate sizing of the implantable collamer lens (ICL) and accurate prediction of the vault are crucial prior to surgery. However, sometimes, the vault value is higher or lower than predicted, necessitating reoperation. The present study aimed to develop neural networks for improving predictions of vault values following ICL implantation based on preoperative biometric data. Methods This retrospective study included 137 eyes of 74 patients with ICLs. Linear regression and neural network analyses were used to examine the relationship between vault values at the 6-month follow-up and preoperative parameters (e.g., ICL characteristics and biometrics). Results Linear regression analysis revealed that vault values were correlated with five variables: ICL size, anterior chamber depth (ACD), angle-to-angle (ATA), white-to-white (WTW), and lens thickness (LT) (adjusted R2 = 0.411). Inclusion of more input variables was associated with better performance in the neural network analysis. The degree of fit when all 11 variables were included in the neural network model was close to 1 (R2 = 0.98). R2 values for the quaternary neural network model enrolling four input variables (ICL size, ATA, ACD, and LT) reached 0.90. Conclusions A neural network equation including the ICL size and biometric parameters of the anterior segment (ATA, ACD, and LT) can be used to predict the postoperative vault, aiding in the selection of an appropriate ICL size and reducing the need for reoperation after surgery.


2016 ◽  
Vol 6 (2) ◽  
pp. 942-952
Author(s):  
Xicun ZHU ◽  
Zhuoyuan WANG ◽  
Lulu GAO ◽  
Gengxing ZHAO ◽  
Ling WANG

The objective of the paper is to explore the best phenophase for estimating the nitrogen contents of apple leaves, to establish the best estimation model of the hyperspectral data at different phenophases. It is to improve the apple trees precise fertilization and production management. The experiments were done in 20 orchards in the field, measured hyperspectral data and nitrogen contents of apple leaves at three phenophases in two years, which were shoot growth phenophase, spring shoots pause growth phenophase, autumn shoots pause growth phenophase. The study analyzed the nitrogen contents of apple leaves with its original spectral and first derivative, screened sensitive wavelengths of each phenophase. The hyperspectral parameters were built with the sensitive wavelengths. Multiple stepwise regressions, partial least squares and BP neural network model were adopted in the study. The results showed that 551 nm, 716 nm, 530 nm, 703 nm; 543 nm, 705 nm, 699 nm, 756 nm and 545 nm, 702 nm, 695 nm, 746 nm were sensitive wavelengths of three phenophases. R551+R716, R551*R716, FDR530+FDR703, FDR530*FDR703; R543+R705, R543*R705, FDR699+FDR756, FDR699*FDR756and R545+R702, R545*R702, FDR695+FDR746, FDR695*FDR746 were the best hyperspectral parameters of each phenophase. Of all the estimation models, the estimated effect of shoot growth phenophase was better than other two phenophases, so shoot growth phenophase was the best phenophase to estimate the nitrogen contents of apple leaves based on hyperspectral models. In the three models, the 4-3-1 BP neural network model of shoot growth phenophase was the best estimation model. The R2 of estimated value and measured value was 0.6307, RE% was 23.37, RMSE was 0.6274.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Sign in / Sign up

Export Citation Format

Share Document