scholarly journals An ECG Heartbeat Classification Method Based on Deep Convolutional Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dengqing Zhang ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
Shengyi Ye ◽  
Wenyu Cai ◽  
...  

The electrocardiogram (ECG) is one of the most powerful tools used in hospitals to analyze the cardiovascular status and check health, a standard for detecting and diagnosing abnormal heart rhythms. In recent years, cardiovascular health has attracted much attention. However, traditional doctors’ consultations have disadvantages such as delayed diagnosis and high misdiagnosis rate, while cardiovascular diseases have the characteristics of early diagnosis, early treatment, and early recovery. Therefore, it is essential to reduce the misdiagnosis rate of heart disease. Our work is based on five different types of ECG arrhythmia classified according to the AAMI EC57 standard, namely, nonectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beat. This paper proposed a high-accuracy ECG arrhythmia classification method based on convolutional neural network (CNN), which could accurately classify ECG signals. We evaluated the classification effect of this classification method on the supraventricular ectopic beat (SVEB) and ventricular ectopic beat (VEB) based on the MIT-BIH arrhythmia database. According to the results, the proposed method achieved 99.8% accuracy, 98.4% sensitivity, 99.9% specificity, and 98.5% positive prediction rate for detecting VEB. Detection of SVEB achieved 99.7% accuracy, 92.1% sensitivity, 99.9% specificity, and 96.8% positive prediction rate.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3347 ◽  
Author(s):  
Zhishuang Yang ◽  
Bo Tan ◽  
Huikun Pei ◽  
Wanshou Jiang

The classification of point clouds is a basic task in airborne laser scanning (ALS) point cloud processing. It is quite a challenge when facing complex observed scenes and irregular point distributions. In order to reduce the computational burden of the point-based classification method and improve the classification accuracy, we present a segmentation and multi-scale convolutional neural network-based classification method. Firstly, a three-step region-growing segmentation method was proposed to reduce both under-segmentation and over-segmentation. Then, a feature image generation method was used to transform the 3D neighborhood features of a point into a 2D image. Finally, feature images were treated as the input of a multi-scale convolutional neural network for training and testing tasks. In order to obtain performance comparisons with existing approaches, we evaluated our framework using the International Society for Photogrammetry and Remote Sensing Working Groups II/4 (ISPRS WG II/4) 3D labeling benchmark tests. The experiment result, which achieved 84.9% overall accuracy and 69.2% of average F1 scores, has a satisfactory performance over all participating approaches analyzed.


2018 ◽  
Vol 44 (4) ◽  
pp. 3173-3182 ◽  
Author(s):  
Fatih Özyurt ◽  
Türker Tuncer ◽  
Engin Avci ◽  
Mustafa Koç ◽  
İhsan Serhatlioğlu

Sign in / Sign up

Export Citation Format

Share Document