scholarly journals Service Partition Method Based on Particle Swarm Fuzzy Clustering

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hong Xia ◽  
Qingyi Dong ◽  
Hui Gao ◽  
Yanping Chen ◽  
ZhongMin Wang

It is difficult to accurately classify a service into specific service clusters for the multirelationships between services. To solve this problem, this paper proposes a service partition method based on particle swarm fuzzy clustering, which can effectively consider multirelationships between services by using a fuzzy clustering algorithm. Firstly, the algorithm for automatically determining the number of clusters is to determine the number of service clusters based on the density of the service core point. Secondly, the fuzzy c -means combined with particle swarm optimization algorithm to find the optimal cluster center of the service. Finally, the fuzzy clustering algorithm uses the improved Gram-cosine similarity to obtain the final results. Extensive experiments on real web service data show that our method is better than mainstream clustering algorithms in accuracy.

2010 ◽  
Vol 29-32 ◽  
pp. 802-808
Author(s):  
Min Min

On analyzing the common problems in fuzzy clustering algorithms, we put forward the combined fuzzy clustering one, which will automatically generate a reasonable clustering numbers and initial cluster center. This clustering algorithm has been tested by real evaluation data of teaching designs. The result proves that the combined fuzzy clustering based on F-statistic is more effective.


1995 ◽  
Vol 05 (02) ◽  
pp. 239-259
Author(s):  
SU HWAN KIM ◽  
SEON WOOK KIM ◽  
TAE WON RHEE

For data analyses, it is very important to combine data with similar attribute values into a categorically homogeneous subset, called a cluster, and this technique is called clustering. Generally crisp clustering algorithms are weak in noise, because each datum should be assigned to exactly one cluster. In order to solve the problem, a fuzzy c-means, a fuzzy maximum likelihood estimation, and an optimal fuzzy clustering algorithms in the fuzzy set theory have been proposed. They, however, require a lot of processing time because of exhaustive iteration with an amount of data and their memberships. Especially large memory space results in the degradation of performance in real-time processing applications, because it takes too much time to swap between the main memory and the secondary memory. To overcome these limitations, an extended fuzzy clustering algorithm based on an unsupervised optimal fuzzy clustering algorithm is proposed in this paper. This algorithm assigns a weight factor to each distinct datum considering its occurrence rate. Also, the proposed extended fuzzy clustering algorithm considers the degree of importances of each attribute, which determines the characteristics of the data. The worst case is that the whole data has an uniformly normal distribution, which means the importance of all attributes are the same. The proposed extended fuzzy clustering algorithm has better performance than the unsupervised optimal fuzzy clustering algorithm in terms of memory space and execution time in most cases. For simulation the proposed algorithm is applied to color image segmentation. Also automatic target detection and multipeak detection are considered as applications. These schemes can be applied to any other fuzzy clustering algorithms.


2021 ◽  
Author(s):  
Congming Shi ◽  
Bingtao Wei ◽  
Shoulin Wei ◽  
Wen Wang ◽  
Hai Liu ◽  
...  

Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method.


Author(s):  
Tarik Kucukdeniz ◽  
Sakir Esnaf ◽  
Engin Bayturk

An uncapacitated multisource Weber problem involves finding facility locations for known customers. When this problem is restated as finding locations for additional new facilities, while keeping the current facilities, a new solution approach is needed. In this study, two new and cooperative fuzzy clustering algorithms are developed to solve a variant of the uncapacitated version of a multisource Weber problem (MWP). The first algorithm proposed is the extensive version of the single iteration fuzzy c-means (SIFCM) algorithm. The SIFCM algorithm assigns customers to existing facilities. The new extended SIFCM (ESIFCM), which is first proposed in this study, allocates discrete locations (coordinates) with the SIFCM and locates and allocates continuous locations (coordinates) with the original FCM simultaneously. If the SIFCM and the FCM, show differences between the successive cluster center values are still decreasing, share customer points among facilities. It is simply explained as single-iteration fuzzy c-means with fuzzy c-means. The second algorithm, also proposed here, runs like the ESIFCM. Instead of the FCM, a Gustafson-Kessel (GK) fuzzy clustering algorithm is used under the same framework. This algorithm is based on single-iteration (SIGK) and the GK algorithms. Numerical results are reported using two MWP problems in a class of a medium-size-data (106 bytes). Using clustering algorithms to locate and allocate the new facilities while keeping current facilities is a novel approach. When applied to the big problems, the speed of the proposed algorithms enable to find a solution while mathematical programming solution is not doable due to the great computational costs.


Sign in / Sign up

Export Citation Format

Share Document