scholarly journals An Improved CEEMDAN Time-Domain Energy Entropy Method for the Failure Mode Identification of the Rolling Bearing

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fengfeng Bie ◽  
Yi Miao ◽  
Fengxia Lyu ◽  
Jian Peng ◽  
Yue Guo

As a key component of a mechanical system, the extraction and accurate identification of rolling bearing fault feature information are of great importance to guarantee the normal operation of the mechanical system. Aiming at that the extraction of rolling bearing fault features and traditional support vector machine parameters affects the overall accuracy of pattern classification, the improved CEEMDAN (complete ensemble empirical mode decomposition with adaptive noise) time-domain energy entropy-based model for fault pattern recognition is proposed. The ICEEMDAN method is developed to decompose the signal to obtain the IMF component series. Then, the particular IMF components are selected according to the trend of correlation coefficient and variance contribution rate; meanwhile, the information entropy (power spectral entropy, singular spectral entropy, and time-domain energy entropy) of the screened IMF components is calculated to construct the feature vector sets, respectively. Finally, the feature vector sets are input into the PSO-SVM (particle swarm optimization-support vector machine) based model for training and pattern recognition. The effectiveness of the proposed method of the improved CEEMDAN time-domain energy entropy and PSO-SVM model is testified through numerical simulation and experiments on rolling bearing datasets. The comparison proceeded with the other mainstream intelligent recognition techniques indicates the superiority of the method with the diagnostic accuracy of 100% as for the final validation.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


Sign in / Sign up

Export Citation Format

Share Document