scholarly journals Model Predictive Control for Automatic Carrier Landing with Time Delay

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kaikai Cui ◽  
Wei Han ◽  
Yujie Liu ◽  
Xinwei Wang ◽  
Xichao Su ◽  
...  

This paper focuses on the problem of automatic carrier landing control with time delay, and an antidelay model predictive control (AD-MPC) scheme for carrier landing based on the symplectic pseudospectral (SP) method and a prediction error method with particle swarm optimization (PE-PSO) is designed. Firstly, the mathematical model for carrier landing control with time delay is given, and based on the Padé approximation (PA) principle, the model with time delay is transformed into an equivalent nondelay one. Furthermore, a guidance trajectory based on the predicted trajectory shape and position deviation is designed in the MPC framework to eliminate the influence of carrier deck motion and real-time error. At the same time, a rolling optimal control block is designed based on the SP algorithm, in which the steady-state carrier air wake compensation is introduced to suppress the interference of the air wake. On this basis, the PE-PSO delay estimation algorithm is proposed to estimate the unknown delay parameter in the equivalent control model. The simulation results show that the delay estimation error of the PE-PSO algorithm is smaller than 2 ms, and the AD-MPC algorithm proposed in this paper can limit the landing height error within ±0.14 m under the condition of multiple disturbances and system input delay. The control accuracy of AD-MPC is much higher than that of the traditional pole assignment algorithm, and its computational efficiency meets the requirement of real-time online tracking.

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 105
Author(s):  
Zhenzhong Chu ◽  
Da Wang ◽  
Fei Meng

An adaptive control algorithm based on the RBF neural network (RBFNN) and nonlinear model predictive control (NMPC) is discussed for underwater vehicle trajectory tracking control. Firstly, in the off-line phase, the improved adaptive Levenberg–Marquardt-error surface compensation (IALM-ESC) algorithm is used to establish the RBFNN prediction model. In the real-time control phase, using the characteristic that the system output will change with the external environment interference, the network parameters are adjusted by using the error between the system output and the network prediction output to adapt to the complex and uncertain working environment. This provides an accurate and real-time prediction model for model predictive control (MPC). For optimization, an improved adaptive gray wolf optimization (AGWO) algorithm is proposed to obtain the trajectory tracking control law. Finally, the tracking control performance of the proposed algorithm is verified by simulation. The simulation results show that the proposed RBF-NMPC can not only achieve the same level of real-time performance as the linear model predictive control (LMPC) but also has a superior anti-interference ability. Compared with LMPC, the tracking performance of RBF-NMPC is improved by at least 43% and 25% in the case of no interference and interference, respectively.


Sign in / Sign up

Export Citation Format

Share Document