scholarly journals Unified Authentication and Access Control for Future Mobile Communication-Based Lightweight IoT Systems Using Blockchain

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shubham Joshi ◽  
Shalini Stalin ◽  
Prashant Kumar Shukla ◽  
Piyush Kumar Shukla ◽  
Ruby Bhatt ◽  
...  

The Internet of Things (IoT) is a new revolution defined by heterogeneous devices made up of intelligent, omnipresent items that are all hooked up to The internet. These devices are frequently implemented in different areas to offer innovative programs in various industrial applications, including intelligent urban, medicine, and societies. Such Internet of Things (IoT) equipment generates a large volume of private and safety information. Because IoT systems are resource-constrained in terms of operation, memory, and communication capability, safeguarding accessibility to them is a difficult task. In the blockchain concept, the majority, or even all network nodes, check the validity and accuracy of exchanged data before accepting and recording it, whether this data is related to financial transactions, measurements of a sensor, or an authentication message. In evaluating the validity of exchanged data, nodes must reach a consensus in order to perform a special action, in which case the opportunity to enter and record transactions and unreliable interactions with the system is significantly reduced. Recently, in order to share and access management of IoT devices’ information with a distributed attitude, a new authentication protocol based on blockchain has been proposed, and it is claimed that this protocol satisfies user privacy while preserving security. Today’s identification and authentication techniques have substantial shortcomings due to rapidly growing prevalence and implementation. As a result, the protection of such gadgets is critical to guarantee the program’s efficacy and safety. A decentralized authentication and access control method for lightweight IoT systems are proposed in this work and a blockchain-based system that enables identification and secures messaging with IoT nodes. The technique is built on fog information systems and the idea of a blockchain system; when contrasted to something like a blockchain-based verification system, the testing findings show that the suggested mechanism outperforms it. The authentication and verification system undergoes using the blockchain technique. Our method takes advantage of blockchain’s inherent advantages while also associated with development authentication systems. Our suggested blockchain-based approach, structure, and layout, in particular, provide for transparency, consistency, and provenance while also providing tamper-proof records. The article describes the general systems architectural style and the analysis and execution of a real scenario as just a prototype system. The authentication included give as protected prototype that can transmit data with secured protocol and achieves minimum error rate.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5053
Author(s):  
Yuanyu Zhang ◽  
Ruka Nakanishi ◽  
Masahiro Sasabe ◽  
Shoji Kasahara

Unauthorized resource access represents a typical security threat in the Internet of things (IoT), while distributed ledger technologies (e.g., blockchain and IOTA) hold great promise to address this threat. Although blockchain-based IoT access control schemes have been the most popular ones, they suffer from several significant limitations, such as high monetary cost and low throughput of processing access requests. To overcome these limitations, this paper proposes a novel IoT access control scheme by combining the fee-less IOTA technology and the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) technology. To control the access to a resource, a token, which records access permissions to this resource, is encrypted by the CP-ABE technology and uploaded to the IOTA Tangle (i.e., the underlying database of IOTA). Any user can fetch the encrypted token from the Tangle, while only those who can decrypt this token are authorized to access the resource. In this way, the proposed scheme enables not only distributed, fee-less and scalable access control thanks to the IOTA but also fine-grained attribute-based access control thanks to the CP-ABE. We show the feasibility of our scheme by implementing a proof-of-concept prototype system using smart phones (Google Pixel 3XL) and a commercial IoT gateway (NEC EGW001). We also evaluate the performance of the proposed scheme in terms of access request processing throughput. The experimental results show that our scheme enables object owners to authorize access rights to a large number of subjects in a much (about 5 times) shorter time than the existing access control scheme called Decentralized Capability-based Access Control framework using IOTA (DCACI), significantly improving the access request processing throughput.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2002
Author(s):  
Francesco Buccafurri ◽  
Vincenzo De Angelis ◽  
Roberto Nardone

The Internet of Things is constantly capturing interest from modern applications, changing our everyday life and empowering industrial applications. Interaction and the collaboration among smart devices offer new challenges to security since they conflict with economic and energy consumption requirement constraints. On the other hand, the lack of security measures could negatively impact the concrete adoption of this paradigm. This paper focuses on the Message Queuing Telemetry Transport (MQTT) protocol, widely adopted in the Internet of Things. This protocol does not implement natively secure authentication mechanisms, which are demanded to developers. Hence, this paper proposes a novel OTP (one-time password)-authentication schema for MQTT, which uses the Ethereum blockchain to implement a second-factor out-of-band channel. The proposal enables the authentication of both local and remote devices preserving user privacy and guaranteeing trust and accountability via Ethereum smart contracts.


2020 ◽  
Vol 26 (6) ◽  
pp. 747-761
Author(s):  
Łukasz Apiecionek ◽  
Jacek Czerniak ◽  
Dawid Ewald ◽  
Mateusz Biedziak

There is currently an era of Internet of Things in the computer systems, which consists in connecting all possible devices to the Internet in order to provide them with new functionalities and thus { to improve the user's life standard. One of such solutions could be Smart Home. The possibility of monitoring inner environment is required for such solutions. Such monitoring provides potential for e.g. better heating control. The authors of this paper propose some heating control method with Fuzzy Logic. The proposed method was tested in a special climate chamber. The authors provided conclusions at the end of the paper.


Author(s):  
Yingying Hu ◽  
Zhongyang Li

Against the background of the growing development of the Internet of Things, this article conducts research on more efficient methods for controlling the interconnection of all things, and proposes that smart devices use the same operating platform, and the human-computer interface presents universal modular controls for manipulation, it can satisfy the requirement that one device controls several different types of controlled device simultaneously. At the same time, the interactive method uses the controlled device to actively submit control content to the control device, and discusses the human-computer interactive control method applicable to the Internet of Everything, and strives to achieve a convenient and easy-to-use human-computer control experience.


2013 ◽  
Vol 58 (5-6) ◽  
pp. 1189-1205 ◽  
Author(s):  
Sergio Gusmeroli ◽  
Salvatore Piccione ◽  
Domenico Rotondi

Sign in / Sign up

Export Citation Format

Share Document