scholarly journals A Conformance Testing Methodology and System for Cognitive Radios

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Francisco S. S. Silva ◽  
Andson M. Balieiro ◽  
Francisco F. de Mendoça ◽  
Kelvin L. Dias ◽  
Paulo Guarda

The fifth generation (5G) of mobile networks has started its operation in some countries and is aimed at meeting demands beyond the current system capabilities such as the huge amount of connected devices from IoT applications (e.g., smart cities), explosive growth of high-speed mobile data traffic (e.g., ultrahigh definition video streaming), and ultrareliable and low latency communication (e.g., autonomous vehicle). To attend to these needs, the electromagnetic spectrum must be made available, but the static spectrum allocation policy has caused a spectrum shortage and impaired the employment/expansion of the wireless systems. To overcome this issue, the dynamic spectrum access (DSA) has been promoted in 5G/6G networks, which is enabled by the cognitive radio (CR) technology. Although diverse mechanisms have been developed to tackle the challenges that emerge in different CR layers/functionalities, a standardized testing methodology and system for CR is still immature. Existing standards or methodologies and systems for CR only focus on the definition of network technologies (e.g., IEEE 802.22 and IEEE 802.11af), performance evaluation of CR algorithms/mechanisms, or definition of the device cognition level via performance results or psychometric approaches, not covering systems/methodologies to verify if the device meets the CR capabilities and regulatory policies, neglecting the conformance testing. In this respect, this paper proposes a flexible methodology and system for CR conformance testing under two perspectives, functionalities and limits. We instantiate it by using the Universal Software Radio Peripheral (USRP) software-defined radio platform and present a proof-of-concept with a conformance metric. The results show the feasibility of our proposal.

2014 ◽  
Vol 2014 ◽  
pp. 1-20
Author(s):  
Bodhisatwa Sadhu ◽  
Martin Sturm ◽  
Brian M. Sadler ◽  
Ramesh Harjani

This paper explores passive switched capacitor based RF receiver front ends for spectrum sensing. Wideband spectrum sensors remain the most challenging block in the software defined radio hardware design. The use of passive switched capacitors provides a very low power signal conditioning front end that enables parallel digitization and software control and cognitive capabilities in the digital domain. In this paper, existing architectures are reviewed followed by a discussion of high speed passive switched capacitor designs. A passive analog FFT front end design is presented as an example analog conditioning circuit. Design methodology, modeling, and optimization techniques are outlined. Measurements are presented demonstrating a 5 GHz broadband front end that consumes only 4 mW power.


2021 ◽  
pp. 1-10
Author(s):  
S. Surekha ◽  
Md. Zia Ur Rahman

In medical telemetry networks, cognitive radio technology is mostly used to avoid licensed spectrum underutilization and by providing access to unlicensed spectrum users without causing interference to primary users, this concept is widely used in development of smart hospitals and smart cities. In medical telemetry networks frequency spectrum concept is used for providing treatment to patients who are far away from hospitals. In cognitive radios, spectrum sensing concept is used in which energy detection method is mostly used because it is simple to implement. While measuring health care environments using cognitive radios probability detection, false alarm probability and threshold parameters are calculated. In this paper for identifying spectrum holes in spectrum sensing using energy detection, distributed diffusion non-negative least mean square algorithm is proposed. It gives better results compared to energy detection concept alone in terms of probability detection converged earlier. If number of nodes are increasing probability detection is decreased from one and move towards left and its SNR is around 1.5-2 dB with proposed method. Hence simulation results give better results in terms of sensing ability while measuring patient condition.


Sign in / Sign up

Export Citation Format

Share Document