scholarly journals Analysis of Vehicle Platform Vibration Based on Empirical Mode Decomposition

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chengwu Shen ◽  
Zhiqian Wang ◽  
Chang Liu ◽  
Qinwen Li ◽  
Jianrong Li ◽  
...  

Vehicle platform vibration (VPV) directly affects the measurement accuracy of precise measuring instrument (PMI) fixed on it. In order to reduce the influences of VPV on measurement accuracy, it is necessary to perform vibration isolation between vehicle platform and PMI. Analysis of vibration characteristics is a prerequisite for vibration isolation. However, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) reveal that there is obvious mode mixing phenomenon in the collected VPV signals. In this paper, a noise stretch ensemble empirical mode decomposition (NSEEMD) method is proposed to suppress mode mixing, and the specific operation process of NSEEMD is expounded. By NSEEMD, mode mixing of the collected platform vibration data is well suppressed, and the principal component of platform vibration can be obtained.


2017 ◽  
Vol 09 (02) ◽  
pp. 1750004 ◽  
Author(s):  
Pawel Rzeszucinski ◽  
Michal Juraszek ◽  
James R. Ottewill

The paper introduces the concept of exploring the potential of Ensemble Empirical Mode Decomposition (EEMD) and Sparsity Measurement (SM) in enhancing the diagnostic information contained in the Time Synchronous Averaging (TSA) method used in the field of gearbox diagnostics. EEMD was created as a natural improvement of the Empirical Mode Decomposition which suffered from a so-called mode mixing problem. SM is heavily used in the field of ultrasound signal processing as a tool for assessing the degree of sparsity of a signal. A novel process of automatically finding the optimal parameters of EEMD is proposed by incorporating a Form Factor parameter, known from the field of electrical engineering. All these elements are combined and applied on a set of vibration data generated on a 2-stage gearbox under healthy and faulty conditions. The results suggest that combining these methods may increase the robustness of the condition monitoring routine, when compared to the standard TSA used alone.





2011 ◽  
Vol 121-126 ◽  
pp. 815-819 ◽  
Author(s):  
Yu Qiang Qin ◽  
Xue Ying Zhang

Ensemble empirical mode decomposition(EEMD) is a newly developed method aimed at eliminating mode mixing present in the original empirical mode decomposition (EMD). To evaluate the performance of this new method, this paper investigates the effect of two parameters pertinent to EEMD: the emotional envelop and the number of emotional ensemble trials. At the same time, the proposed technique has been utilized for four kinds of emotional(angry、happy、sad and neutral) speech signals, and compute the number of each emotional ensemble trials. We obtain an emotional envelope by transforming the IMFe of emotional speech signals, and obtain a new method of emotion recognition according to different emotional envelop and emotional ensemble trials.



2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohang Zhou ◽  
Deshan Shan ◽  
Qiao Li

In the ensemble empirical mode decomposition (EEMD) algorithm, different realizations of white noise are added to the original signal as dyadic filter banks to overcome the mode mixing problems of empirical mode decomposition (EMD). However, not all the components in white noise are necessary, and the superfluous components will introduce additional mode mixing problems. To address this problem, morphological filter-assisted ensemble empirical mode decomposition (MF-EEMD) was proposed in this paper. First, a new method for determining the structuring element shape and size was proposed to improve the adaptive ability of morphological filter (MF). Then, the adaptive MF was introduced into EMD to remove the superfluous white noise components to improve the decomposition results. Based on the contributions of MF in a single EMD process, the MF-EEMD was proposed by combining EEMD with MF to suppress the mode mixing problems. Finally, an analog signal and a measured signal were used to verify the feasibility of MF-EEMD. The results show that MF-EEMD significantly mitigates the mode mixing problems and achieves a higher decomposition efficiency compared to that of EEMD.



2020 ◽  
Vol 26 (23-24) ◽  
pp. 2230-2242
Author(s):  
Ying Shi ◽  
Cai Yi ◽  
Jianhui Lin ◽  
Zhe Zhuang ◽  
Senhua Lai

In this article, a fault diagnosis approach for a pantograph is developed with collected vibration data from a test rig. Ensemble empirical mode decomposition is used to decompose the signals to get intrinsic mode function, and four kinds of entropies (permu1tation entropy, approximate entropy, sample entropy, and fuzzy entropy) reflecting the working state are extracted as the inputs of the support vector machine based on particle swarm optimization algorithm support vector machine. The effect of data length, embedded dimension, and other parameters on calculation of the entropy value has also been studied. Multiple feature ranking criteria are used to select the useful features and improve the fault diagnosis accuracy of certain measurement points. Experimental results on pantograph vibration analysis have then confirmed that the proposed method provides an effective measure for pantograph diagnosis.



Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Liu ◽  
Peng Zheng ◽  
Qilin Dai ◽  
Zhongli Zhou

The problems of mode mixing, mode splitting, and pseudocomponents caused by intermittence or white noise signals during empirical mode decomposition (EMD) are difficult to resolve. The partly ensemble EMD (PEEMD) method is introduced first. The PEEMD method can eliminate mode mixing via the permutation entropy (PE) of the intrinsic mode functions (IMFs). Then, bilateral permutation entropy (BPE) of the IMFs is proposed as a means to detect and eliminate mode splitting by means of the reconstructed signals in the PEEMD. Moreover, known ingredient component signals are comparatively designed to verify that the PEEMD method can effectively detect and progressively address the problem of mode splitting to some degree and generate IMFs with better performance. The microseismic signal is applied to prove, by means of spectral analysis, that this method is effective.



Penetration of distributed generation (DG) is rapidly increasing but their main issue is islanding. Advanced signal processing methods needs a renewed focus in detecting islanding. The proposed scheme is based on Ensemble Empirical Mode Decomposition (EEMD) in which Gaussian white noise is added to original signal which solves the mode mixing problem of Empirical mode decomposition (EMD) and Hilbert transform is applied to obtained Intrinsic mode functions(IMF). The proposed method reliably and accurately detects disturbances at different events



Sign in / Sign up

Export Citation Format

Share Document