scholarly journals A New Islanding Detection Technique using Ensemble Empirical Mode Decomposition

Penetration of distributed generation (DG) is rapidly increasing but their main issue is islanding. Advanced signal processing methods needs a renewed focus in detecting islanding. The proposed scheme is based on Ensemble Empirical Mode Decomposition (EEMD) in which Gaussian white noise is added to original signal which solves the mode mixing problem of Empirical mode decomposition (EMD) and Hilbert transform is applied to obtained Intrinsic mode functions(IMF). The proposed method reliably and accurately detects disturbances at different events

Author(s):  
Y Lei ◽  
M J Zuo ◽  
M Hoseini

Empirical mode decomposition (EMD) has been widely applied to analyse signals for the detection of faults in rotating machinery. However, sometimes, it cannot reveal signal characteristics accurately because of the mode mixing problem. Ensemble empirical mode decomposition (EEMD) was developed recently to alleviate the mode mixing problem of EMD. With EEMD, components that are physically meaningful can be extracted from the signals. Bispectrum, a third-order statistic, helps identify phase coupling effects, which are useful for detecting faults in rotating machinery. Utilizing the advantages of EEMD and bispectrum, this article proposes a joint method for detecting such faults. First, original vibration signals collected from rotating machinery are decomposed by EEMD and a set of intrinsic mode functions (IMFs) is produced. Then, the IMFs are reconstructed into new signals using the weighted reconstruction algorithm developed in this article. Finally, the reconstructed signals are analysed via bispectrum to detect faults. The simulation experiments and the physical experiments of two gears with a chipped tooth and a cracked tooth, respectively, demonstrate that the proposed method can detect faults more clearly than can directly performing bispectrum on the original vibration signals.


2017 ◽  
Vol 09 (02) ◽  
pp. 1750004 ◽  
Author(s):  
Pawel Rzeszucinski ◽  
Michal Juraszek ◽  
James R. Ottewill

The paper introduces the concept of exploring the potential of Ensemble Empirical Mode Decomposition (EEMD) and Sparsity Measurement (SM) in enhancing the diagnostic information contained in the Time Synchronous Averaging (TSA) method used in the field of gearbox diagnostics. EEMD was created as a natural improvement of the Empirical Mode Decomposition which suffered from a so-called mode mixing problem. SM is heavily used in the field of ultrasound signal processing as a tool for assessing the degree of sparsity of a signal. A novel process of automatically finding the optimal parameters of EEMD is proposed by incorporating a Form Factor parameter, known from the field of electrical engineering. All these elements are combined and applied on a set of vibration data generated on a 2-stage gearbox under healthy and faulty conditions. The results suggest that combining these methods may increase the robustness of the condition monitoring routine, when compared to the standard TSA used alone.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Liu ◽  
Peng Zheng ◽  
Qilin Dai ◽  
Zhongli Zhou

The problems of mode mixing, mode splitting, and pseudocomponents caused by intermittence or white noise signals during empirical mode decomposition (EMD) are difficult to resolve. The partly ensemble EMD (PEEMD) method is introduced first. The PEEMD method can eliminate mode mixing via the permutation entropy (PE) of the intrinsic mode functions (IMFs). Then, bilateral permutation entropy (BPE) of the IMFs is proposed as a means to detect and eliminate mode splitting by means of the reconstructed signals in the PEEMD. Moreover, known ingredient component signals are comparatively designed to verify that the PEEMD method can effectively detect and progressively address the problem of mode splitting to some degree and generate IMFs with better performance. The microseismic signal is applied to prove, by means of spectral analysis, that this method is effective.


Author(s):  
Yaguo Lei ◽  
Ming J. Zuo ◽  
Mohammad Hoseini

Ensemble empirical mode decomposition (EEMD) was developed to alleviate the mode-mixing problem in empirical mode decomposition (EMD). With EEMD, the components with physical meaning can be extracted from the signal. The bispectrum, a third-order statistic, helps identify phase-coupling effects, which are useful for detecting faults in rotating machinery. Combining the advantages of EEMD and bispectrum, this paper proposes a new method for detecting such faults. First, the original vibration signals collected from rotating machinery are decomposed by EEMD and a set of intrinsic mode functions (IMFs) is produced. Then, the IMFs are reconstructed into new signals using the weighted reconstruction algorithm developed in this paper. Finally, the reconstructed signals are analyzed via the bispectrum to detect faults. Both simulation examples and gearbox experiments demonstrate that the proposed method can detect gear faults more clearly than can directly performing bispectrum analysis on the original vibration signals.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Jing Yuan ◽  
Zhengjia He ◽  
Jun Ni ◽  
Adam John Brzezinski ◽  
Yanyang Zi

Various faults inevitably occur in mechanical systems and may result in unexpected failures. Hence, fault detection is critical to reduce unscheduled downtime and costly breakdowns. Empirical mode decomposition (EMD) is an adaptive time-frequency domain signal processing method, potentially suitable for nonstationary and/or nonlinear processes. However, the EMD method suffers from several problems such as mode mixing, defined as intrinsic mode functions (IMFs) with incorrect scales. In this paper, an ensemble noise-reconstructed EMD method is proposed to ameliorate the mode mixing problem and denoise IMFs for enhancing fault signatures. The proposed method defines the IMF components as an ensemble mean of EMD trials, where each trial is obtained by sifting signals that have been reconstructed using the estimated noise present in the measured signal. Unlike traditional denoising methods, the noise inherent in the input data is reconstructed and used to reduce the background noise. Furthermore, the reconstructed noise helps to project different scales of the signal onto their corresponding IMFs, instrumental in alleviating the mode mixing problem. Two critical issues concerned in the method, i.e., the noise estimation strategy and the number of EMD trials required for denoising are discussed. Furthermore, a comprehensive noise-assisted EMD method is proposed, which includes the proposed method and ensemble EMD (EEMD). Numerical simulations and experimental case studies on accelerometer data collected from an industrial shaving process are used to demonstrate and validate the proposed method. Results show that the proposed method can both detect impending faults and isolate multiple faults. Hence, the proposed method can act as a promising tool for mechanical fault detection.


Author(s):  
SH Momeni Massouleh ◽  
Seyed Ali Hosseini Kordkheili ◽  
H Mohammad Navazi

The main objective of this work is to propose a scheme to extract intrinsic mode functions of online data with an acceptable speed as well as accuracy. For this purpose, an individual block framework method is firstly employed to extract the intrinsic mode functions. In this method, buffers are selected such that they overlap with their neighbors to prevent the end effect errors with no need for the averaging process. And in order to avoid the mode mixing problem, a bandwidth empirical mode decomposition scheme is developed to effectively improve the results. Through this scheme, an auxiliary function made of both high- and low-frequency components corresponding to noise and dominant frequency is added to data for the strengthening of the components for the better extraction of intrinsic mode functions during sifting process. An index criterion as well as a threshold limit is also introduced to separate high- and low-frequency parts of data at desired frequency range. Advantages of the proposed scheme are assessed and comparisons with the available methods are presented. Solution of different types of examples and experimentally generated data for two faulty ball bearings reveals that the present easily implemented scheme achieves results with lower computational efforts and accuracy.


2019 ◽  
Vol 91 (4) ◽  
pp. 582-600
Author(s):  
S. Abolfazl Mokhtari ◽  
Mehdi Sabzehparvar

Purpose The paper aims to present an innovative method for identification of flight modes in the spin maneuver, which is highly nonlinear and coupled dynamic. Design/methodology/approach To fix the mode mixing problem which is mostly happen in the EMD algorithm, the authors focused on the proposal of an optimized ensemble empirical mode decomposition (OEEMD) algorithm for processing of the flight complex signals that originate from FDR. There are two improvements with the OEEMD respect to the EEMD. First, this algorithm is able to make a precise reconstruction of the original signal. The second improvement is that the OEEMD performs the task of signal decomposition with fewer iterations and so with less complexity order rather than the competitor approaches. Findings By applying the OEEMD algorithm to the spin flight parameter signals, flight modes extracted, then with using systematic technique, flight modes characteristics are obtained. The results indicate that there are some non-standard modes in the nonlinear region due to couplings between the longitudinal and lateral motions. Practical implications Application of the proposed method to the spin flight test data may result accurate identification of nonlinear dynamics with high coupling in this regime. Originality/value First, to fix the mode mixing problem in EMD, an optimized ensemble empirical mode decomposition algorithm is introduced, which disturbed the original signal with a sort of white Gaussian noise, and by using white noise statistical characteristics the OEEMD fix the mode mixing problem with high precision and fewer calculations. Second, by applying the OEEMD to the flight output signals and with using the systematic method, flight mode characteristics which is very important in the simulation and controller designing are obtained.


2020 ◽  
Vol 20 (4) ◽  
pp. 1439-1452
Author(s):  
Yi-zhen Li ◽  
Chun-fang Yue

Abstract With increasingly severe climate changes and intensified human activities, it is more and more difficult to predict the non-stationary extreme runoff series accurately. In this research, based on the ‘decomposition-prediction-reconstruction’ model, an instantaneous frequency distribution map was used to measure the effect of empirical mode decomposition (EMD), ensemble empirical mode decomposition, complete ensemble empirical mode decomposition and extreme-point symmetric mode decomposition (ESMD) in dealing with mode mixing; appropriate prediction methods for each component were selected to form a combined prediction model; and the advantages of a combined prediction model based on ESMD were compared and analyzed with the following results acquired: (1) ESMD can address the mode mixing problem with EMD; (2) particle swarm optimization-least squares support vector machine, autoregressive model (1) and random forest are suitable for high-/medium-/low-frequency components and the residual components R; (3) the results of the combined prediction model are better than those of the single ones; and (4) the prediction effect of the combined prediction model is the best under ESMD decomposition, and the prediction errors of the runoff extreme value sequence can be reduced by about 58–80% compared with the three other decomposition methods. Moreover, as demonstrated in this study, the combined prediction model based on ESMD can effectively predict the non-stationary extreme runoff series, while providing reference for forecasting other non-stationary time series.


2021 ◽  
Vol 2021 ◽  
pp. 1-30
Author(s):  
Xiao-dong Niu ◽  
Li-rong Lu ◽  
Jian Wang ◽  
Xing-cheng Han ◽  
Xuan Li ◽  
...  

Empirical mode decomposition (EMD) is an effective method to deal with nonlinear nonstationary data, but the lack of orthogonal decomposition theory and mode-mixing are the main problems that limit the application of EMD. In order to solve these two problems, we propose an improved method of EMD. The most important part of this improved method is to change the mean value by envelopes of signal in EMD to the mean value by the definite integral, which enables the mean value to be mathematically expressed strictly. Firstly, we prove that the signal is orthogonally decomposed by the improved method. Secondly, the Monte Carlo method of white noise is used to explain that the improved method can effectively alleviate mode-mixing. In addition, the improved method is adaptive and does not need any input parameters, and the intrinsic mode functions (IMFs) generated from it is robust to sifting. We have carried out experiments on a series of artificial and real data, the results show that the improved method is the orthogonal decomposition method and can effectively alleviate mode-mixing, and it has better decomposition performance and physical meaning than EMD, ensemble EMD (EEMD), and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). In addition, the improved method is generally more time-consuming than EMD, but far less than EEMD and CEEMDAN.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Shi-Chang Du ◽  
Tao Liu ◽  
De-Lin Huang ◽  
Gui-Long Li

The vibration signal decomposition is a critical step in the assessment of machine health condition. Though ensemble empirical mode decomposition (EEMD) method outperforms fast Fourier transform (FFT), wavelet transform, and empirical mode decomposition (EMD) on nonstationary signal decomposition, there exists a mode mixing problem if the two critical parameters (i.e., the amplitude of added white noise and the number of ensemble trials) are not selected appropriately. A novel EEMD method with optimized two parameters is proposed to solve the mode mixing problem in vibration signal decomposition in this paper. In the proposed optimal EEMD, the initial values of the two critical parameters are selected based on an adaptive algorithm. Then, a multimode search algorithm is explored to optimize the critical two parameters by its good performance in global and local search. The performances of the proposed method are demonstrated by means of a simulated signal, two bearing vibration signals, and a vibration signal in a milling process. The results show that compared with the traditional EEMD method and other improved EEMD method, the proposed optimal EEMD method automatically obtains the appropriate parameters of EEMD and achieves higher decomposition accuracy and faster computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document