scholarly journals Application of 3D Laser Scanning in Underground Station Cavity Clusters

2021 ◽  
Vol 2021 ◽  
pp. 1-12 ◽  
Author(s):  
Li Pinpin ◽  
Qiu Wenge ◽  
Cheng Yunjian ◽  
Lu Feng

Given the shortcomings of the tunnel overbreak and underbreak control and primary support sectional area detection such as the single means, large workload, low efficiency, and poor accuracy, the use of three-dimensional laser technology can solve the above problems. Based on the Badaling Tunnel Great Wall underground station of the Beijing-Zhangjiakou Railway, the 3D laser scanning technology is used to analyze the distribution of the tunnel overbreak and underbreak and the sectional area of the primary support, compared with the total station measurement results. The results showed that the layout of the scanning measurement station should consider the requirements of scanning accuracy, control the station length and scanning incidence angle, and minimize the scanning station length to reduce the scanning error. The majority of the tunnel section was in overbreak, with the overbreak area ranging from 6.22  m 2 to 13.17  m 2 and the overbreak rate ranging from 0.283 to 0.598, and the area of underbreak was relatively small; no overexceeded headroom was found in the primary support, and the tunnel vault was not overbreak. The primary support clearance value of the vault is 0∼15  mm , the clearance value of the sidewall is 35  mm ∼40  mm , and the sidewall needs to be secondary shotcrete. The difference value between the 3D laser scanning measurement data and the total station measurement data is within 3  mm , which is within the error range, indicating the validity and reliability of the 3D laser measurement result.

2014 ◽  
Vol 709 ◽  
pp. 465-468
Author(s):  
Xian Quan Han ◽  
Fei Qin ◽  
Zhen Zhang ◽  
Shang Yi Yang

This paper examines the basic flow and processing of the terrestrial 3D Laser scanning technology in the tunnel survey. The use of the method is discussed, point cloud data which have been registered, cropped can be constructed to a complete tunnel surface model. An example is given to extract the tunnel section and calculate the excavation of the tunnel. Result of the experimental application of this analysis procedure is given to illustrate the proposed technique can be flexibly used according to the need based on its 3D model. The feasibility and advantages of terrestrial 3D laser scanning technology in tunnel survey is also considered.


Author(s):  
Adriana Rossi ◽  
Umberto Palmieri

<p>Wanting to answer the questions unsolved by a previous study supported by a survey with total station, this article illustrates the results obtained with 3D laser scanning acquisitions and photo shot datasets. The precision provided by the phase shift ranging scanner technology has allowed to measure to the millimeter the deviation between the surveyed model (objective of reality, although discontinuous) and the geometric model on these data interpreted. In addition, the mathematical hypotheses useful for parametric modelling (geometry processing) are discussed. Virtualizations have been created by adopting knowledge filters and scientific tools that address to the digital (re)construction (HBIM) that allows to share and manage information and to integrate interoperable models in accordance with current public procurement regulations.</p>


2020 ◽  
Vol 118 (1) ◽  
pp. 106
Author(s):  
Lei Zhang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Guoli Jia ◽  
Jian Gong ◽  
...  

The three-dimensional (3D) model of erosion state of blast furnace (BF) hearth was obtained by using 3D laser scanning method. The thickness of refractory lining can be measured anywhere and the erosion curves were extracted both in the circumferential and height directions to analyze the erosion characteristics. The results show that the most eroded positions located below 20# tuyere with an elevation of 7700 mm and below 24#–25# tuyere with an elevation of 8100 mm, the residual thickness here is only 295 mm. In the circumferential directions, the serious eroded areas located between every two tapholes while the taphole areas were protected well by the bonding material. In the height directions, the severe erosion areas located between the elevation of 7600 mm to 8200 mm. According to the calculation, the minimum depth to ensure the deadman floats in the hearth is 2581 mm, corresponding to the elevation of 7619 mm. It can be considered that during the blast furnace production process, the deadman has been sinking to the bottom of BF hearth and the erosion areas gradually formed at the root of deadman.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3416
Author(s):  
Pawel Burdziakowski ◽  
Angelika Zakrzewska

The continuous and intensive development of measurement technologies for reality modelling with appropriate data processing algorithms is currently being observed. The most popular methods include remote sensing techniques based on reflected-light digital cameras, and on active methods in which the device emits a beam. This research paper presents the process of data integration from terrestrial laser scanning (TLS) and image data from an unmanned aerial vehicle (UAV) that was aimed at the spatial mapping of a complicated steel structure, and a new automatic structure extraction method. We proposed an innovative method to minimize the data size and automatically extract a set of points (in the form of structural elements) that is vital from the perspective of engineering and comparative analyses. The outcome of the research was a complete technology for the acquisition of precise information with regard to complex and high steel structures. The developed technology includes such elements as a data integration method, a redundant data elimination method, integrated photogrammetric data filtration and a new adaptive method of structure edge extraction. In order to extract significant geometric structures, a new automatic and adaptive algorithm for edge extraction from a random point cloud was developed and presented herein. The proposed algorithm was tested using real measurement data. The developed algorithm is able to realistically reduce the amount of redundant data and correctly extract stable edges representing the geometric structures of a studied object without losing important data and information. The new algorithm automatically self-adapts to the received data. It does not require any pre-setting or initial parameters. The detection threshold is also adaptively selected based on the acquired data.


2011 ◽  
Vol 43 (6) ◽  
pp. 1216-1221 ◽  
Author(s):  
S. Lagüela ◽  
J. Martínez ◽  
J. Armesto ◽  
P. Arias

Sign in / Sign up

Export Citation Format

Share Document