scholarly journals Pattern Synthesis for Dual-Polarized Conformal Arrays via Iterative Convex Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chao Liu ◽  
Chuan Li ◽  
Bo Yang

An iterative convex optimization (ICO) algorithm is proposed to solve pattern synthesis problem under the framework of dual-polarized conformal arrays in this paper. The subproblems of shaping main lobe, optimizing side lobe, and suppressing cross-polarization component are summarized as a joint optimization problem. To solve this problem, the nonconvex constraint about main lobe is rewritten as a convex constraint, which will bring error. And an auxiliary phase function is introduced to correct this error alternatively. Due to the deviation between auxiliary phase and real phase of pattern function, a method minimizing the peak of the synthesis error over observation angles is effectively applied to further improve the performance of the method. Numerical examples show good pattern synthesis ability and convergence performance of the ICO method.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Lei Liang ◽  
Yachao Jiang ◽  
Jialing Liu ◽  
Hailin Li ◽  
Jianjiang Zhou

This paper addresses the constrained multiobjective optimization problem of time-modulated sparse arrays. The synthesis objective is to find an optimal element arrangement and associated excitation strategy of sparse arrays, which realize the balance of radiation power and sideband suppression performance with minimum number of elements, and suppress side lobe level simultaneously. A novel hybrid algorithm based on orthogonal perturbation method and convex optimization (OPM-CVX) for the synthesis of time-modulated sparse antenna array is presented in this paper. In order to satisfy the main lobe beamforming and side lobe suppression of sparse arrays, the proposed method optimizes element positions with minimum array numbers by orthogonal perturbation method and optimizes excitations of array element with dynamic range ratio constraint by convex optimization. Furthermore, a trapezoidal pulse time-modulated switching function is proposed to find the balance of radiation power and sideband suppression performance. The numerical results indicate that the proposed algorithm can be an effective approach for synthesis problems of time-modulated sparse arrays.


1993 ◽  
Vol 41 (6) ◽  
pp. 824-831 ◽  
Author(s):  
Y.-C. Jiao ◽  
W.-Y. Wei ◽  
L.-W. Huang ◽  
H.-S. Wu

2020 ◽  
Vol 13 (44) ◽  
pp. 4465-4473
Author(s):  
Chandu Kavitha ◽  

Background/Objectives: The design of appropriate Non-Linear Frequency Modulation (NLFM) signals continues to be the focus of research in radar pulse compression theory for sidelobe reduction. This study focuses on a heuristic design and optimization algorithm to optimize the side lobe values of the NLFM signal designed using two-piece wise linear frequency modulation (LFM) functions. Methods: 1) Heuristic search identifies the optimum B1, T1, and B2, T2, which yield the lowest sidelobe value of the designed function.2) Compute all the side lobe values of the designed NLFM signal using an algorithm developed in Python scripting language. To plot a complete contour map for all the calculated side lobe values, which helps identify the associated variations in the range of side lobe values. Finally, optimize the side lobe values keeping the main lobe width and time-bandwidth (BT) product unchanged by designing a dynamic optimization algorithm. Findings: The algorithm developed considered all side lobe levels after the main lobe for optimization. The focus is mainly on the peak sidelobe ratio (PSLR) value without affecting the other parameters. The results demonstrate that the achieved side lobes exhibit their desired levels. Novelty: The method is useful in all types of hardware associated with weather radar applications to military solutions. The technique can be extended to other multistage signals consisting of piecewise linear Segments. Keywords: Contour; LFM; NLFM; optimization; PSLR


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1464-1478
Author(s):  
Jiadong Hua ◽  
Liang Zeng ◽  
Jing Lin ◽  
Liping Huang

Lamb wave pulse compression is a promising technique for ultrasonic nondestructive evaluation and structural health monitoring, in which the excitation waveform is designed to exhibit attractive auto-correlation characteristics including short main-lobe width and small side-lobe amplitude. However, narrowing main-lobe will increase side-lobe amplitude, and vice versa. Conventional time windowing technique is a balance between main-lobe width and side-lobe amplitude. An improvement over time windowing is proposed using pulse compression synthesis method. In this method, a series of excitation waveforms are used to actuate Lamb waves, each response is processed by pulse compression, and all the compression signals are summed together. The excitation series are constructed as linear chirps weighted with different combinations of rectangular and Hanning window functions. The selection of the combination coefficients is optimized to ensure best signal summation. The effectiveness of the proposed method is demonstrated by an experiment, and the robustness to inaccuracy in dispersion compensation is also evaluated. Application of the proposed method for damage detection is demonstrated by a further experiment.


Author(s):  
Gebrehiwet Gebrekrstos Lema

<p>For high performance communication systems, Side Lobe Level (SLL) reduction and improved directivity are the goal of antenna designers. In the recent years, many optimization techniques of antenna design are occupying demanding place over the analytical techniques. Though they have contributed attractive solutions, it is often obvious to select one that meets the particular design need at hand. In this paper, an optimization technique called Self-adaptive Differential Evolution (SaDE) that can be able to learn and behave intelligently along with hyper beam forming is integrated to determine an optimal set of excitation weights in the design of EcAA. Non-uniform excitation weights of the individual array elements of EcAA are performed to obtain reduced SLL, high directivity and flexible radiation pattern. To evaluate the improved performance of the proposed SaDE optimized hyper beam, comparison are done with uniformly excited, SaDE without hyper beam and Genetic Algorithm (GA). In general, the proposed work of pattern synthesis has resulted in much better reduction of SLL and FNBW than both the uniformly excited and thinned EcAA. The results of this study clearly reveal that the SLL highly reduced at a very directive beamwidth.</p>


Sign in / Sign up

Export Citation Format

Share Document