scholarly journals Intrusion Detection for Network Based on Elite Clone Artificial Bee Colony and Back Propagation Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guohong Qi ◽  
Jie Zhou ◽  
Wenxian Jia ◽  
Menghan Liu ◽  
Shengnan Zhang ◽  
...  

With the rapid development of Internet technology, network attacks have become more frequent and complex, and intrusion detection has also played an increasingly important role in network security. Intrusion detection is real-time and proactive, and it is an indispensable technology under the diversified trend of network security issues. In terms of network security, neural networks have the characteristics of self-learning, self-adaptation, and parallel computing, which are very important in intrusion detection. This paper combines back propagation neural network (BPNN) and elite clone artificial bee colony (ECABC) to propose a new ECABC-BPNN, which updates and optimizes the settings of traditional BPNN weights and thresholds. Then, apply ECABC-BPNN to network intrusion detection. Use the attack data samples of KDD CUP 99 and water pipe for attack classification experiments using GA-BPNN, PSO-BPNN, and ECABC-BPNN. The results show that the ECABC-BPNN proposed in this paper has an accuracy rate of 98.08% on KDD 99 and 99.76% on water pipe data. ECABC-BPNN effectively improves the accuracy of network intrusion classification and reduces classification errors. In addition, the time complexity of using ECABC-BPNN to classify network attacks is relatively low. Therefore, ECABC-BPNN has superior performance in network intrusion detection and classification.

Author(s):  
SHI ZHONG ◽  
TAGHI M. KHOSHGOFTAAR ◽  
NAEEM SELIYA

Recently data mining methods have gained importance in addressing network security issues, including network intrusion detection — a challenging task in network security. Intrusion detection systems aim to identify attacks with a high detection rate and a low false alarm rate. Classification-based data mining models for intrusion detection are often ineffective in dealing with dynamic changes in intrusion patterns and characteristics. Consequently, unsupervised learning methods have been given a closer look for network intrusion detection. We investigate multiple centroid-based unsupervised clustering algorithms for intrusion detection, and propose a simple yet effective self-labeling heuristic for detecting attack and normal clusters of network traffic audit data. The clustering algorithms investigated include, k-means, Mixture-Of-Spherical Gaussians, Self-Organizing Map, and Neural-Gas. The network traffic datasets provided by the DARPA 1998 offline intrusion detection project are used in our empirical investigation, which demonstrates the feasibility and promise of unsupervised learning methods for network intrusion detection. In addition, a comparative analysis shows the advantage of clustering-based methods over supervised classification techniques in identifying new or unseen attack types.


2017 ◽  
Vol 26 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Shawq Malik Mehibs ◽  
Soukaena Hassan Hashim

Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over the internet. This low-cost service fulfills the basic requirements of users. Because of the open nature and services introduced by cloud computing intruders impersonate legitimate users and misuse cloud resource and services. To detect intruders and suspicious activities in and around the cloud computing environment, intrusion detection system used to discover the illegitimate users and suspicious action by monitors different user activities on the network .this work proposed based back propagation artificial neural network to construct t network intrusion detection in the cloud environment. The proposed module evaluated with kdd99 dataset the experimental results shows promising approach to detect attack with high detection rate and low false alarm rate


Author(s):  
Alexander Ivanov ◽  
◽  
Alexander Kutischev ◽  
Elena Nikitina ◽  
◽  
...  

This paper demonstrated the use of neural networks in the development of network intrusion detection systems, described the structure of the developed software application for network traffic analysis and network attacks detection, and presented the software application results.


2022 ◽  
Vol 8 ◽  
pp. e820
Author(s):  
Hafiza Anisa Ahmed ◽  
Anum Hameed ◽  
Narmeen Zakaria Bawany

The expeditious growth of the World Wide Web and the rampant flow of network traffic have resulted in a continuous increase of network security threats. Cyber attackers seek to exploit vulnerabilities in network architecture to steal valuable information or disrupt computer resources. Network Intrusion Detection System (NIDS) is used to effectively detect various attacks, thus providing timely protection to network resources from these attacks. To implement NIDS, a stream of supervised and unsupervised machine learning approaches is applied to detect irregularities in network traffic and to address network security issues. Such NIDSs are trained using various datasets that include attack traces. However, due to the advancement in modern-day attacks, these systems are unable to detect the emerging threats. Therefore, NIDS needs to be trained and developed with a modern comprehensive dataset which contains contemporary common and attack activities. This paper presents a framework in which different machine learning classification schemes are employed to detect various types of network attack categories. Five machine learning algorithms: Random Forest, Decision Tree, Logistic Regression, K-Nearest Neighbors and Artificial Neural Networks, are used for attack detection. This study uses a dataset published by the University of New South Wales (UNSW-NB15), a relatively new dataset that contains a large amount of network traffic data with nine categories of network attacks. The results show that the classification models achieved the highest accuracy of 89.29% by applying the Random Forest algorithm. Further improvement in the accuracy of classification models is observed when Synthetic Minority Oversampling Technique (SMOTE) is applied to address the class imbalance problem. After applying the SMOTE, the Random Forest classifier showed an accuracy of 95.1% with 24 selected features from the Principal Component Analysis method.


Sign in / Sign up

Export Citation Format

Share Document