scholarly journals Characters of Explicit Solutions for a Semidiscrete Integrable Coupled Equation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qiulan Zhao ◽  
Qianqian Yang ◽  
Xiangwen Qu

A semidiscrete integrable coupled system is obtained by embedding a free function into the discrete zero-curvature equation. Then, explicit solutions of the first two nontrivial equations in this system are derived directly by the Darboux transformation method. Finally, in order to compare the solutions before and after coupling intuitively, their structure figures are presented and analyzed.

2021 ◽  
Author(s):  
He-yuan Tian ◽  
Bo Tian ◽  
Yan Sun ◽  
Su-Su Chen

Abstract In this paper, our work is based on a coupled nonlinear Schr ̈odinger system in a two-mode nonlinear fiber. A (N,m)-generalized Darboux transformation is constructed to derive the Nth-order solutions, where the positive integers N and m denote the numbers of iterative times and of distinct spectral parameters, respectively. Based on the Nth-order solutions and the given steps to perform the asymptotic analysis, it is found that a degenerate dark-bright soliton is the nonlinear superposition of several asymptotic dark-bright solitons possessing the same profile. For those asymptotic dark-bright solitons, their velocities are z-dependent except that one of those velocities could become z-independent under the certain condition, where z denotes the evolution dimension. Those asymptotic dark-bright solitons are reflected during the interaction. When a degenerate dark-bright soliton interacts with a nondegenerate/degenerate dark-bright soliton, the interaction is elastic, and the asymptotic bound-state dark-bright soliton with z-dependent or z-independent velocity could take place under certain conditions. Our study extends the investigation on the degenerate solitons from the bright soliton case for the scalar equations to the dark-bright soliton case for a coupled system.


2021 ◽  
pp. 2150004
Author(s):  
Yaning Tang ◽  
Jiale Zhou

We investigate the mixed interaction solutions of the coupled nonlinear Schrödinger equations (CNLSE) through the Darboux transformation method. First of all, we derive the nonsingular localized wave solutions for two cases of CNLSE by the Darboux transformation method and matrix analysis method. Furthermore, we take a limit technique to deduce rogue waves and divide the rogue waves into four categories through analyzing their dynamic behaviors. Based on the obtained theorems, the Darboux transformations are presented to solve interaction solutions between distinct nonlinear waves. In this paper, we mainly study four types. Finally, the dynamic characteristics of the constructed these solutions are analyzed by sequences of interesting figures plotted with the help of Maple.


2010 ◽  
Vol 24 (08) ◽  
pp. 791-805 ◽  
Author(s):  
YUNHU WANG ◽  
XIANGQIAN LIANG ◽  
HUI WANG

By means of the Lie algebra G1, we construct an extended Lie algebra G2. Two different isospectral problems are designed by the two different Lie algebra G1 and G2. With the help of the variational identity and the zero curvature equation, two families generalization of the AKNS hierarchies and their Hamiltonian structures are obtained, respectively.


2017 ◽  
Vol 72 (9) ◽  
pp. 789-793
Author(s):  
Bo Xue ◽  
Fang Li ◽  
Yihao Li ◽  
Mingming Sun

AbstractBased on the gauge transformation between the corresponding 3×3 matrix spectral problems, N-fold Darboux transformation for a coupled Burgers’ equation is constructed. Considering the N=1 case of the derived Darboux transformation, explicit solutions for the coupled Burgers’ equation are given and their figures are plotted. Moreover, conservation laws of this integrable equation are deduced.


2009 ◽  
Vol 23 (05) ◽  
pp. 731-739
Author(s):  
YONGQING ZHANG ◽  
YAN LI

A soliton-equation hierarchy from the D. Levi spectral problem is obtained under the framework of zero curvature equation. By employing two various multi-component Lie algebras and the loop algebras, we enlarge the Levi spectral problem and the corresponding time-part isospectral problems so that two different integrable couplings are produced. Using the quadratic-form identity yields the Hamiltonian structure of one of the two integrable couplings.


Sign in / Sign up

Export Citation Format

Share Document