scholarly journals An Effective and Efficient Sample Preparation Method for 2-Methyl-Isoborneol and Geosmin in Fish and Their Analysis by Gas Chromatography-Mass Spectrometry

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liang-liang Tian ◽  
Feng Han ◽  
Essy Kouadio Fodjo ◽  
Wenlei Zhai ◽  
Xuan-Yun Huang ◽  
...  

The intensive aquaculture strategy and recirculating aquaculture system often lead to the production of off-flavor compounds such as 2-methyl-isoborneol (2-MIB) and Geosmin (GSM). The regular purge and trap extraction followed by analysis with gas chromatography-mass spectrometry (GC-MS) usually involve a complicated assembly of facilities, more working space, long sample preparation time, and headspace solid-phase microextraction (SPME). In this work, a method with easier sample preparation, fewer and simplified facilities, and without SPME on GC-MS analysis is developed for the determination of 2-MIB and GSM in fish samples. Unlike previous methods, solvent extract from samples, QuEChERS-based cleanup, and solid-phase extraction for concentration are applied. The LOD (S/N > 3) and LOQ (S/N > 10) of this method were validated at 0.6 μg/kg and 1.0 μg/kg for both 2-MIB and GSM, which are under the sensory limit (1 μg/kg). Application of this method for incurred fish samples demonstrated acceptable analytical performance. This method is suitable for large-scale determination of 2-MIB and GSM in fish samples, owing to the use of simple facility and easy-to-operate procedure, rapid sample preparation, and shorter time for GC-MS analysis without SPME.

Metabolites ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 482
Author(s):  
Prashant Aggarwal ◽  
James Baker ◽  
Mark T. Boyd ◽  
Séamus Coyle ◽  
Chris Probert ◽  
...  

Headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) can be used to measure volatile organic compounds (VOCs) in human urine. However, there is no widely adopted standardised protocol for the preparation of urine samples for analysis resulting in an inability to compare studies reliably between laboratories. This paper investigated the effect of altering urine sample pH, volume, and vial size for optimising detection of VOCs when using HS-SPME-GC-MS. This is the first, direct comparison of H2SO4, HCl, and NaOH as treatment techniques prior to HS-SPME-GC-MS analysis. Altering urine sample pH indicates that H2SO4 is more effective at optimising detection of VOCs than HCl or NaOH. H2SO4 resulted in a significantly larger mean number of VOCs being identified per sample (on average, 33.5 VOCs to 24.3 in HCl or 12.2 in NaOH treated urine) and more unique VOCs, produced a more diverse range of classes of VOCs, and led to less HS-SPME-GC-MS degradation. We propose that adding 0.2 mL of 2.5 M H2SO4 to 1 mL of urine within a 10 mL headspace vial is the optimal sample preparation prior to HS-SPME-GC-MS analysis. We hope the use of our optimised method for urinary HS-SPME-GC-MS analysis will enhance our understanding of human disease and bolster metabolic biomarker identification.


Sign in / Sign up

Export Citation Format

Share Document