scholarly journals Gallilei covariant quantum mechanics in electromagnetic fields

1985 ◽  
Vol 8 (3) ◽  
pp. 589-597 ◽  
Author(s):  
H. E. Wilhelm

A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocitywis in magnitude comparable with the velocity of lightc. The electromagnetic substratum velocitywoccurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 12
Author(s):  
William Stuckey ◽  
Timothy McDevitt ◽  
Michael Silberstein

Quantum information theorists have created axiomatic reconstructions of quantum mechanics (QM) that are very successful at identifying precisely what distinguishes quantum probability theory from classical and more general probability theories in terms of information-theoretic principles. Herein, we show how one such principle, Information Invariance and Continuity, at the foundation of those axiomatic reconstructions, maps to “no preferred reference frame” (NPRF, aka “the relativity principle”) as it pertains to the invariant measurement of Planck’s constant h for Stern-Gerlach (SG) spin measurements. This is in exact analogy to the relativity principle as it pertains to the invariant measurement of the speed of light c at the foundation of special relativity (SR). Essentially, quantum information theorists have extended Einstein’s use of NPRF from the boost invariance of measurements of c to include the SO(3) invariance of measurements of h between different reference frames of mutually complementary spin measurements via the principle of Information Invariance and Continuity. Consequently, the “mystery” of the Bell states is understood to result from conservation per Information Invariance and Continuity between different reference frames of mutually complementary qubit measurements, and this maps to conservation per NPRF in spacetime. If one falsely conflates the relativity principle with the classical theory of SR, then it may seem impossible that the relativity principle resides at the foundation of non-relativisitic QM. In fact, there is nothing inherently classical or quantum about NPRF. Thus, the axiomatic reconstructions of QM have succeeded in producing a principle account of QM that reveals as much about Nature as the postulates of SR.


2007 ◽  
Vol 22 (32) ◽  
pp. 6243-6251 ◽  
Author(s):  
HRVOJE NIKOLIĆ

The conserved probability densities (attributed to the conserved currents derived from relativistic wave equations) should be nonnegative and the integral of them over an entire hypersurface should be equal to one. To satisfy these requirements in a covariant manner, the foliation of space–time must be such that each integral curve of the current crosses each hypersurface of the foliation once and only once. In some cases, it is necessary to use hypersurfaces that are not spacelike everywhere. The generalization to the many-particle case is also possible.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A generalized and unifying viewpoint to both general relativity and quantum mechanics and information is investigated. It may be described as a generaliztion of the concept of reference frame from mechanics to thermodynamics, or from a reference frame linked to an element of a system, and thus, within it, to another reference frame linked to the whole of the system or to any of other similar systems, and thus, out of it. Furthermore, the former is the viewpoint of general relativity, the latter is that of quantum mechanics and information.Ciclicity in the manner of Nicolas Cusanus (Nicolas of Cusa) is complemented as a fundamental and definitive property of any totality, e.g. physically, that of the universe. It has to contain its externality within it somehow being namely the totality. This implies a seemingly paradoxical (in fact, only to common sense rather logically and mathematically) viewpoint for the universe to be repesented within it as each one quant of action according to the fundamental Planck constant.That approach implies the unification of gravity and entanglement correspondiing to the former or latter class of reference frames. An invariance, more general than Einstein's general covariance is to be involved as to both classes of reference frames unifying them. Its essence is the unification of the discrete and cotnitinuous (smooth). That idea underlies implicitly quantum mechanics for Bohr's principle that it study the system of quantum microscopic entities and the macroscopic apparatus desribed uniformly by the smmoth equations of classical physics.e


2019 ◽  
Vol 6 (2) ◽  
pp. 86-99 ◽  
Author(s):  
E. M. Frantsiyants ◽  
E. A. Sheiko

The review examined and analyzed scientific publications on the effect of electromagnetic fields (EMF) on various sys­tems of the human body and animals with tumors, as well as on pain in the experiment and the clinic. The theoretical foundations and practical results of the use of EMF in various modulations and modes in the goals and objectives of oncology, including how to optimize the process of anesthesia and correct the vital activity of the body's functional systems with a tumor, are consecrated. Information is given on possible physicochemical effects, features, and mecha­nisms of therapeutic influence at various levels of a living organism. The ability of electromagnetic waves to transfer in­formation both within a single biosystem and at the level of a whole living organism with a tumor is shown. Studies of combined action of EMF and chemotherapy were analyzed. It has been established that there are experimental prerequisites for using this factor in order to induce changes in the permeability of the membranes of tumor cells by in­creasing the internalization of chemotherapeutic agents and, thus, enhance the antitumor effect. The role of EMF in the induction of apoptosis in tumor cells is shown. It has been shown that chemotherapy together with electromagnetic fields induces apoptosis and has an inhibitory effect on DNA synthesis in osteosarcoma cells, breast cancer, colon cancer, melanoma and other tumors. The role of magnetic fields in order to enhance the analgesic effect was investigated. The analgesic effect is due to the cessation or weakening of nerve impulses from the painful focus due to the elimination of hypoxia, the improvement of microcirculation, and the reduction of edema, it has been shown. Transcranial magnetic therapy is used as an analgesic tool in onconurology. The therapeutic anti-pain effect is associated with the stimulation of the antinociceptive system, an increase in the synthesis of natural analgesics — endorphins with their subsequent release into the cerebrospinal fluid and blood. As it has already been shown, with the increase in the intensity of pain and its duration, all indicators of the quality of life and the results of treatment of the patient deteriorate, so the search for ways to improve the antitumor effectiveness of specialized treatment and eliminate the causes that prevent their im­plementation continue to be relevant and in demand.


Author(s):  
David Romero-Abad ◽  
Jose Pedro Reyes Portales ◽  
Roberto Suárez-Córdova

Abstract The propagation of electromagnetic waves in a medium with electrical and magnetic anisotropy is a subject that is not usually handled in conventional optics and electromagnetism books. During this work, we try to give a pedagogical approach to the subject, using tools that are accessible to an average physics student. In this article, we obtain the Fresnel relation in a media with electromagnetic anisotropy, which corresponds to a quartic equation in the refraction index, assuming only that the principal axes of the electric and magnetic tensors coincide. Additionally, we find the geometric location related to the different situations the discriminant of the quartic equation provides. In order to illustrate our findings, we determine the refractive index together with the plane wave equations for certain values of the parameters that meet the established conditions. The target readers of the paper are students pursuing physics at the intermediate undergraduate level.


Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn

This chapter shows how Einstein has developed and described the mathematical apparatus that is necessary to formulate the physical contents of the general theory of gravity. It first discusses the transition from the special to the general relativity principle. According to Einstein's understanding of such a general relativity principle, physical laws are independent of the state of motion of the reference space in which they are described. The chapter argues that such a generalization of the relativity principle to include accelerated reference frames is possible because all inertial effects caused by acceleration can be alternatively attributed to the presence of a gravitational field. The model of a rotating disk is then used to show that general relativity implies non-Euclidean geometry and that the gravitational field is represented by curved spacetime. After the introduction of these basic concepts and principles, the chapter presents the mathematical formulation of the theory.


2021 ◽  
Vol 38 (23) ◽  
pp. 238002
Author(s):  
Felipe A Asenjo ◽  
Sergio A Hojman

Abstract A reply to the previous article commenting on non-geodesical propagation of electromagnetic fields on gravitational backgrounds and the eikonal limit are presented.


Sign in / Sign up

Export Citation Format

Share Document