scholarly journals Surface temperature determination from Borehole measurements: Regularization and error estimates

1995 ◽  
Vol 18 (3) ◽  
pp. 601-605 ◽  
Author(s):  
Tran Thi Le ◽  
Milagros Navarro

The authors consider the problem of determining the temperature distributionu(x,t)on the half-linex=0,t>0, from measurements at an interior point, for allt>0. As is well-known, this is an ill-posed problem Using the Tikhonov method, the authors give a regularized solution, and assuming the (unknown) exact solution is inHα(ℝ),α>0. They give an error estimate of the order1/(1n1/ ϵ )αforϵ →0, whereϵ >0is a bound on the measurement error.

2018 ◽  
Vol 1 (T5) ◽  
pp. 193-202
Author(s):  
Thang Duc Le

In this paper, we investigate the Cauchy problem for a ND nonlinear elliptic equation in a bounded domain. As we know, the problem is severely ill-posed. We apply the Fourier truncation method to regularize the problem. Error estimates between the regularized solution and the exact solution are established in Hp space under some priori assumptions on the exact solution.


2018 ◽  
Vol 1 (T5) ◽  
pp. 184-192
Author(s):  
Au Van Vo ◽  
Tuan Hoang Nguyen

In this paper, we study a Cauchy problem for the heat equation with linear source in the form ut(x,t)= uxx(x,t)+f(x,t), u(L,t)=  φ(t), u(L,t)= Ψ (t), (x,t) ∈ (0,L) ×(0, 2π). This problem is ill-posed in the sense of Hadamard. To regularize the problem, the truncation method is proposed to solve the problem in the presence of noisy Cauchy data φε and Ψε satisfying ‖ φε - φ ‖+‖ Ψε - Ψ ‖ ≤ ε and that fε satisfying ‖ fε(x,. ) - f(x,.) ‖ ≤ ε .  We give some error estimates between the regularized solution and the exact solution under some different a-priori conditions of exact solution.


2018 ◽  
Vol 26 (4) ◽  
pp. 541-550
Author(s):  
V. P. Tanana

Abstract The problem of correlating the error estimates at a point and on a correctness class is of interest to many mathematicians. Since the desired solution to a real ill-posed problem is unique, the error estimate obtained on the class becomes crude. In this paper, by assuming that an exact solution is a piecewise smooth function, we prove, for a special class of incorrect problems, that an error estimate at a point is an infinitely small quantity compared with an exact estimate on a correctness set.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Fang-Fang Dou ◽  
Chu-Li Fu

We consider a Cauchy problem for the Helmholtz equation at a fixed frequency. The problem is severely ill posed in the sense that the solution (if it exists) does not depend continuously on the data. We present a wavelet method to stabilize the problem. Some error estimates between the exact solution and its approximation are given, and numerical tests verify the efficiency and accuracy of the proposed method.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 705 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li

In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed. The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile, the corresponding error estimate between the exact solution and the regularized solution is obtained. A numerical example is presented to illustrate the validity and effectiveness of our methods.


2015 ◽  
Vol 7 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Jingjun Zhao ◽  
Songshu Liu ◽  
Tao Liu

AbstractIn this paper, a Cauchy problem of two-dimensional heat conduction equation is investigated. This is a severely ill-posed problem. Based on the solution of Cauchy problem of two-dimensional heat conduction equation, we propose to solve this problem by modifying the kernel, which generates a well-posed problem. Error estimates between the exact solution and the regularized solution are given. We provide a numerical experiment to illustrate the main results.


Author(s):  
XIANG-TUAN XIONG ◽  
CHU-LI FU

We apply a wavelet dual least squares method to a backward heat equation. Connecting Shannon wavelet bases with a special project method, the dual least squares method, we can obtain a regularized solution. Meanwhile, a new error estimate between the approximate solution and exact solution is proved.


Author(s):  
O. V. Matysik ◽  
V. F. Savchuk

In the introduction, the object of investigation is indicated – incorrect problems described by first-kind operator equations. The subject of the study is an explicit iterative method for solving first-kind equations. The aim of the paper is to prove the convergence of the proposed method of simple iterations with an alternating step alternately and to obtain error estimates in the original norm of a Hilbert space for the cases of self-conjugated and non self-conjugated problems. The a priori choice of the regularization parameter is studied for a source-like representable solution under the assumption that the operator and the right-hand side of the equation are given approximately. In the main part of the work, the achievement of the stated goal is expressed in four reduced and proved theorems. In Section 1, the first-kind equation is written down and a new explicit method of simple iteration with alternating steps is proposed to solve it. In Section 2, we consider the case of the selfconjugated problem and prove Theorem 1 on the convergence of the method and Theorem 2, in which an error estimate is obtained. To obtain an error estimate, an additional condition is required – the requirement of the source representability of the exact solution. In Section 3, the non-self-conjugated problem is solved, the convergence of the proposed method is proved, which in this case is written differently, and its error estimate is obtained in the case of an a priori choice of the regularization parameter. In sections 2 and 3, the error estimates obtained are optimized, that is, a value is found – the step number of the iteration, in which the error estimate is minimal. Since incorrect problems constantly arise in numerous applications of mathematics, the problem of studying them and constructing methods for their solution is topical. The obtained results can be used in theoretical studies of solution of first-kind operator equations, as well as applied ill-posed problems encountered in dynamics and kinetics, mathematical economics, geophysics, spectroscopy, systems for complete automatic processing and interpretation of experiments, plasma diagnostics, seismic and medicine.


2021 ◽  
pp. 1994-1999
Author(s):  
Shilan Othman Hussein

In this article, the inverse source problem is determined by the partition hyperbolic equation under the left end flux tension of the string, where the extra measurement is considered. The approximate solution is obtained in the form of splitting and applying the finite difference method (FDM). Moreover, this problem is ill-posed, dealing with instability of force after adding noise to the additional condition. To stabilize the solution, the regularization matrix is considered. Consequently, it is proved by error estimates between the regularized solution and the exact solution. The numerical results show that the method is efficient and stable.


Author(s):  
Stefan Kindermann

AbstractTikhonov regularization in Banach spaces with convex penalty and convex fidelity term for linear ill-posed operator equations is studied. As a main result, convergence rates in terms of the Bregman distance of the regularized solution to the exact solution is proven by imposing a generalization of the established variational inequality conditions on the exact solution. This condition only involves a decay rate of the difference of the penalty functionals in terms of the residual.


Sign in / Sign up

Export Citation Format

Share Document