scholarly journals Summaries of certain spatial patterns retrieved from multidate remote-sensing data

2004 ◽  
Vol 2004 (2) ◽  
pp. 287-300
Author(s):  
Hema Nair

This paper presents an approach to describe patterns in remote-sensed images utilising fuzzy logic. The truth of a linguistic proposition such as “Y isF” can be determined for each pattern characterised by a tuple in the database, where Y is the pattern andFis a summary that applies to that pattern. This proposition is formulated in terms of primary quantitative measures, such as area, length, perimeter, and so forth, of the pattern. Fuzzy descriptions of linguistic summaries help to evaluate the degree to which a summary describes a pattern or object in the database. Techniques, such as clustering and genetic algorithms, are used to mine images. Image mining is a relatively new area of research. It is used to extract patterns from multidated satellite images of a geographic area.

2017 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Clement Kwang ◽  
Edward Matthew Osei Jnr ◽  
Adwoa Sarpong Amoah

Remote sensing data are most often used in water bodies’ extraction studies and the type of remote sensing data used also play a crucial role on the accuracy of the extracted water features. The performance of the proposed water indexes among the various satellite images is not well documented in literature. The proposed water indexes were initially developed with a particular type of data and with advancement and introduction of new satellite images especially Landsat 8 and Sentinel, therefore the need to test the level of performance of these water indexes as new image datasets emerged. Landsat 8 and Sentinel 2A image of part Volta River was used. The water indexes were performed and then ISODATA unsupervised classification was done. The overall accuracy and kappa coefficient values range from 98.0% to 99.8% and 0.94 to 0.98 respectively. Most of water bodies enhancement indexes work better on Sentinel 2A than on Landsat 8. Among the Landsat based water bodies enhancement ISODATA unsupervised classification, the modified normalized water difference index (MNDWI) and normalized water difference index (NDWI) were the best classifier while for Sentinel 2A, the MNDWI and the automatic water extraction index (AWEI_nsh) were the optimal classifier. The least performed classifier for both Landsat 8 and Sentinel 2A was the automatic water extraction index (AWEI_sh). The modified normalized water difference index (MNDWI) has proved to be the universal water bodies enhancement index because of its performance on both the Landsat 8 and Sentinel 2A image.


2017 ◽  
Author(s):  
Gorka Mendiguren ◽  
Julian Koch ◽  
Simon Stisen

Abstract. Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land-atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two source energy balance model (TSEB) driven mainly by satellite remote sensing data. The main hypothesis of the study is that while both approaches are essentially estimates, the spatial patterns of the remote sensing based approach are explicitly driven by observed land surface temperature and therefore represent the most direct spatial pattern information of ET; enabling its use for distributed hydrological model evaluation. Ideally the hydrological model simulation and remote sensing based approach should present similar spatial patterns and driving mechanism of ET. However, the spatial comparison showed that the differences are significant and indicating insufficient spatial pattern performance of the hydrological model. The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in 6 domains that are calibrated independently from each other, as it is often the case for large scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of Leaf Area Index (LAI), root depth (RD) and Crop coefficient (Kc) for each land cover type. This zonal approach of model parametrization ignores the spatio-temporal complexity of the natural system. To overcome this limitation, the study features a modified version of the DK-Model in which LAI, RD, and KC are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatio-temporal variability and spatial consistency between the 6 domains. The effects of these changes are analyzed by using the empirical orthogonal functions (EOF) analysis to evaluate spatial patterns. The EOF-analysis shows that including remote sensing derived LAI, RD and KC in the distributed hydrological model adds spatial features found in the spatial pattern of remote sensing based ET.


2020 ◽  
Vol 217 ◽  
pp. 04003
Author(s):  
Natalia Martynova ◽  
Valentina Budarova ◽  
Artem Sheremetinsky ◽  
Nikita Mezentsev

The development of technological progress provides more opportunities for indirect monitoring of changes in the environment. Remote sensing is one of The most accessible and reliable sources of information. In this work, we used satellite images from the Landsat family. The theoretical justification of the research question is given. The research methodology was developed. Collection and processing of satellite images for various time periods. A series of schematic maps based on remote sensing Data has been created. As a result of digitization of satellite images, 9 glacier contours were obtained by year. We determined the area of the Romantics glacier and found that it lost at least 60% of its original area. These studies were used to build a series of cartographic schemes that clearly show the reduction of the glacier area. It is concluded that the use of remote sensing allows you to solve problems, monitoring the object. The use of this method allows not only to save time for field work, but also material costs for expedition equipment and various equipment. This method can be tested on any objects.


2020 ◽  
Vol 175 ◽  
pp. 12013 ◽  
Author(s):  
Marina Ganzhur ◽  
Nikita Dyachenko ◽  
Olga Smirnova ◽  
Anna Poluyan ◽  
Natalya Panasenko

This work considers to the processes of «bloom» phytoplankton processes that cause hypoxic phenomena in shallow waters the example of the Sea of Azov. For the accumulation of information, multichannel satellite images of remote sensing are taken as a basis. In the process, the task of programmatically highlighting the contours of the areas of «bloom» is implemented.


Author(s):  
Tigran Shahbazyan

The article considers the methodology of monitoring specially protected natural areas using remote sensing data. The research materials are satellite images of the Landsat 5 and Landsat 8 satellites, obtained from the resource of the US Geological Survey. The key areas of the study were 3 specially protected areas located within the boundaries of the forest-steppe landscapes of the Stavropol upland, the reserves «Alexandrovskiy», «Russkiy Les», «Strizhament». The space survey materials were selected for the period 1991–2020, and the data from the summer seasons were used. The NDVI index is chosen as the method of processing the spectral channels of satellite imagery. To integrate long-term satellite imagery into a single raster image, the method of variance of the variation series for the NDVI index was used. The article describes an algorithm for processing satellite images, which allows us to identify the features of the dynamics of the vegetation state of the studied territory for the period 1991–2020. The bitmap image constructed by means of the variance of the NDVI index was classified by the quantile method, to translate numerical values into classes with qualitative characteristics. There were 4 classes of the territory according to the degree of dynamism of the vegetation state: “stable”, “slightly variable”, “moderately variable”, “highly variable”. The paper highlights the factors of landscape transformation, including natural and anthropogenic ones. In the course of the study, the determining influence of anthropogenic factors of transformation was noted. The greatest impact is on the reserve «Alexandrovskiy», the least on the reserve «Russkiy Les», in the reserve «Strizhament» the impact is expressed locally. The paper identifies the leading anthropogenic factors of vegetation transformation, based on their influence on vegetation.


Sign in / Sign up

Export Citation Format

Share Document