scholarly journals A spectral approach to compute the mean performance measures of the queue with low-order BMAP input

2003 ◽  
Vol 16 (4) ◽  
pp. 349-360 ◽  
Author(s):  
Ho Woo Lee ◽  
Jong Min Moon ◽  
Jong Keun Park ◽  
Byung Kyu Kim

This paper targets engineers and practitioners who want a simple procedure to compute the mean performance measures of the Batch Markovian Arrival process (BMAP/G/1) queueing system when the parameter matrices order is very low. We develop a set of system equations and derive the vector generating function of the queue length. Starting from the generating function, we propose a spectral approach that can be understandable to those who have basic knowledge of M/G/1 queues and eigenvalue algebra.

1999 ◽  
Vol 5 (4) ◽  
pp. 329-348
Author(s):  
Boo Yong Ahn ◽  
Ho Woo Lee

We model the error control of the partial buffer sharing of ATM by a queueing systemM1,M2/G/1/K+1with threshold and instantaneous Bernoulli feedback. We first derive the system equations and develop a recursive method to compute the loss probabilities at an arbitrary time epoch. We then build an approximation scheme to compute the mean waiting time of each class of cells. An algorithm is developed for finding the optimal threshold and queue capacity for a given quality of service.


Author(s):  
Gregor Selinka ◽  
Raik Stolletz ◽  
Thomas I. Maindl

Many stochastic systems face a time-dependent demand. Especially in stochastic service systems, for example, in call centers, customers may leave the queue if their waiting time exceeds their personal patience. As discussed in the extant literature, it can be useful to use general distributions to model such customer patience. This paper analyzes the time-dependent performance of a multiserver queue with a nonhomogeneous Poisson arrival process with a time-dependent arrival rate, exponentially distributed processing times, and generally distributed time to abandon. Fast and accurate performance approximations are essential for decision support in such queueing systems, but the extant literature lacks appropriate methods for the setting we consider. To approximate time-dependent performance measures for small- and medium-sized systems, we develop a new stationary backlog-carryover (SBC) approach that allows for the analysis of underloaded and overloaded systems. Abandonments are considered in two steps of the algorithm: (i) in the approximation of the utilization as a reduced arrival stream and (ii) in the approximation of waiting-based performance measures with a stationary model for general abandonments. To improve the approximation quality, we discuss an adjustment to the interval lengths. We present a limit result that indicates convergence of the method for stationary parameters. The numerical study compares the approximation quality of different adjustments to the interval length. The new SBC approach is effective for instances with small numbers of time-dependent servers and gamma-distributed abandonment times with different coefficients of variation and for an empirical distribution of the abandonment times from real-world data obtained from a call center. A discrete-event simulation benchmark confirms that the SBC algorithm approximates the performance of the queueing system with abandonments very well for different parameter configurations. Summary of Contribution: The paper presents a fast and accurate numerical method to approximate the performance measures of a time‐dependent queueing system with generally distributed abandonments. The presented stationary backlog carryover approach with abandonment combines algorithmic ideas with stationary queueing models for generally distributed abandonment times. The reliability of the method is analyzed for transient systems and numerically studied with real‐world data.


1997 ◽  
Vol 34 (3) ◽  
pp. 767-772 ◽  
Author(s):  
John A. Barnes ◽  
Richard Meili

The points of a non-stationary Poisson process with periodic intensity are independently shifted forward in time in such a way that the transformed process is stationary Poisson. The mean shift is shown to be minimal. The approach used is to consider an Mt/Gt/∞ queueing system where the arrival process is a non-stationary Poisson with periodic intensity function. A minimal service time distribution is constructed that yields a stationary Poisson departure process.


1994 ◽  
Vol 7 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Sadrac K. Matendo

We consider a single server infinite capacity queueing system, where the arrival process is a batch Markovian arrival process (BMAP). Particular BMAPs are the batch Poisson arrival process, the Markovian arrival process (MAP), many batch arrival processes with correlated interarrival times and batch sizes, and superpositions of these processes. We note that the MAP includes phase-type (PH) renewal processes and non-renewal processes such as the Markov modulated Poisson process (MMPP).The server applies Kella's vacation scheme, i.e., a vacation policy where the decision of whether to take a new vacation or not, when the system is empty, depends on the number of vacations already taken in the current inactive phase. This exhaustive service discipline includes the single vacation T-policy, T(SV), and the multiple vacation T-policy, T(MV). The service times are i.i.d. random variables, independent of the interarrival times and the vacation durations. Some important performance measures such as the distribution functions and means of the virtual and the actual waiting times are given. Finally, a numerical example is presented.


2003 ◽  
Vol 40 (1) ◽  
pp. 180-199 ◽  
Author(s):  
Fabrice Guillemin ◽  
Ravi Mazumdar ◽  
Alain Dupuis ◽  
Jacqueline Boyer

We analyse in this paper the fluid weighted fair queueing system with two classes of customers, who arrive according to Poisson processes and require arbitrarily distributed service times. In a first step, we express the Laplace transform of the joint distribution of the workloads in the two virtual queues of the system by means of unknown Laplace transforms. Such an unknown Laplace transform is related to the distribution of the workload in one queue provided that the other queue is empty. We explicitly compute the unknown Laplace transforms by means of a Wiener—Hopf technique. The determination of the unknown Laplace transforms can be used to compute some performance measures characterizing the system (e.g. the mean waiting time for each class) which we compute in the exponential service case.


1968 ◽  
Vol 5 (02) ◽  
pp. 461-466
Author(s):  
Gerold Pestalozzi

A queueing system is considered where each item has a property associated with it, and where the service time interposed between two items depends on the properties of both of these items. The steady state of a single-channel queue of this type, with Poisson input, is investigated. It is shown how the probability generating function of the number of items waiting can be found. Easily applied approximations are given for the mean number of items waiting and for the average waiting time.


1988 ◽  
Vol 25 (1) ◽  
pp. 169-183 ◽  
Author(s):  
D. König ◽  
M. Miyazawa

For the delayed Bernoulli feedback queue with first come–first served discipline under weak assumptions a relationship for the generating functions of the joint queue-length distribution at various points in time is given. A decomposition for the generating function of the stationary total queue length distribution has been proven. The Laplace-Stieltjes transform of the stationary joint workload distribution function is represented by its marginal distributions. The arrival process is Poisson, renewal or arbitrary stationary, respectively. The service times can form an i.i.d. sequence at each queue. Different kinds of product form of the generating function of the joint queue-length distribution are discussed.


1995 ◽  
Vol 32 (01) ◽  
pp. 63-73
Author(s):  
A. J. Coyle ◽  
P. G. Taylor

There are some generalised semi-Markov processes (GSMP) which are insensitive, that is the value of some performance measures for the system depend only on the mean value of lifetimes and not on their actual distribution. In most cases this is not true and a performance measure can take on a number of values depending on the lifetime distributions. In this paper we present a method for finding tight bounds on the sensitivity of performance measures for the class of GSMPs with a single generally distributed lifetime. Using this method we can find upper and lower bounds for the value of a function of the stationary distribution as the distribution of the general lifetime ranges over a set of distributions with fixed mean. The method is applied to find bounds on the average queue length of the Engset queue and the time congestion in theGI/M/n/nqueueing system.


2003 ◽  
Vol 40 (01) ◽  
pp. 180-199
Author(s):  
Fabrice Guillemin ◽  
Ravi Mazumdar ◽  
Alain Dupuis ◽  
Jacqueline Boyer

We analyse in this paper the fluid weighted fair queueing system with two classes of customers, who arrive according to Poisson processes and require arbitrarily distributed service times. In a first step, we express the Laplace transform of the joint distribution of the workloads in the two virtual queues of the system by means of unknown Laplace transforms. Such an unknown Laplace transform is related to the distribution of the workload in one queue provided that the other queue is empty. We explicitly compute the unknown Laplace transforms by means of a Wiener—Hopf technique. The determination of the unknown Laplace transforms can be used to compute some performance measures characterizing the system (e.g. the mean waiting time for each class) which we compute in the exponential service case.


Sign in / Sign up

Export Citation Format

Share Document