Combined inactivation of CTPS1 and ATR is synthetically lethal to MYC-overexpressing cancer cells

2022 ◽  
pp. canres.1707.2021
Author(s):  
Zhe Sun ◽  
Ziheng Zhang ◽  
Qiao-Qi Wang ◽  
Ji-Long Liu
2009 ◽  
Vol 106 (31) ◽  
pp. 12968-12973 ◽  
Author(s):  
J. J. Molenaar ◽  
M. E. Ebus ◽  
D. Geerts ◽  
J. Koster ◽  
F. Lamers ◽  
...  

2020 ◽  
Vol 80 (8) ◽  
pp. 1735-1747 ◽  
Author(s):  
Rebecca F. Rogers ◽  
Michael I. Walton ◽  
Daniel L. Cherry ◽  
Ian Collins ◽  
Paul A. Clarke ◽  
...  

Cell Cycle ◽  
2012 ◽  
Vol 11 (15) ◽  
pp. 2782-2792 ◽  
Author(s):  
Javier A. Menendez ◽  
Cristina Oliveras-Ferraros ◽  
Sílvia Cufí ◽  
BRUNA COROMINAS-FAJA ◽  
Jorge Joven ◽  
...  

2014 ◽  
Vol 74 (10) ◽  
pp. 2835-2845 ◽  
Author(s):  
Kareem N. Mohni ◽  
Gina M. Kavanaugh ◽  
David Cortez

Cell Cycle ◽  
2012 ◽  
Vol 11 (15) ◽  
pp. 2779-2779
Author(s):  
Ashwani Khurana ◽  
Viji Shridhar

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pietro Pinoli ◽  
Sriganesh Srihari ◽  
Limsoon Wong ◽  
Stefano Ceri

Abstract Background A pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells. Results In this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the “Gene Activity Ranking Profile” GARP score; the second leverages the annotations of gene to biological pathways. Conclusions This method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs.


Cell Reports ◽  
2020 ◽  
Vol 32 (12) ◽  
pp. 108184
Author(s):  
Kathleen Klotz-Noack ◽  
Bertram Klinger ◽  
Maria Rivera ◽  
Natalie Bublitz ◽  
Florian Uhlitz ◽  
...  

2009 ◽  
Author(s):  
Marianne M. Helbling ◽  
Iris Schmitt ◽  
Erich Greiner ◽  
Wilhelm Krek

Sign in / Sign up

Export Citation Format

Share Document