Abstract 2186: Quantitative cell surface proteome profiling of CD4+T cells to identify potential therapeutic targets for adult T-cell leukemia (ATL).

Author(s):  
Makoto Ishihara ◽  
Natsumi Araya ◽  
Tomoo Sato ◽  
Atae Utsunomiya ◽  
Yoshihisa Yamano ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (13) ◽  
pp. 3609-3612 ◽  
Author(s):  
Andrea K. Kress ◽  
Martina Kalmer ◽  
Aileen G. Rowan ◽  
Ralph Grassmann ◽  
Bernhard Fleckenstein

AbstractOncogenic transformation of CD4+ T cells by human T-cell lymphotropic virus type 1 (HTLV-1) is understood as the initial step to adult T-cell leukemia/lymphoma, a process that is mainly initiated by perturbation of cellular signaling by the viral Tax oncoprotein, a potent transcriptional regulator. In search of novel biomarkers with relevance to oncogenesis, we identified the tumor marker and actin-bundling protein Fascin (FSCN1) to be specifically and strongly up-regulated in both HTLV-1–transformed and adult T-cell leukemia/lymphoma patient-derived CD4+ T cells. Fascin is important for migration and metastasis in various types of cancer. Here we report that a direct link can exist between a single viral oncoprotein and Fascin expression, as the viral oncoprotein Tax was sufficient to induce high levels of Fascin. Nuclear factor-κB signals were important for Tax-mediated transcriptional regulation of Fascin in T cells. This suggests that Fascin up-regulation by Tax contributes to the development of HTLV-1–associated pathogenesis.


2007 ◽  
Vol 121 (12) ◽  
pp. 2585-2590 ◽  
Author(s):  
Takatoshi Shimauchi ◽  
Kenji Kabashima ◽  
Daiki Nakashima ◽  
Kazunari Sugita ◽  
Yoko Yamada ◽  
...  

Blood ◽  
1989 ◽  
Vol 74 (7) ◽  
pp. 2486-2492
Author(s):  
Y Fukunaga ◽  
SS Evans ◽  
M Yamamoto ◽  
Y Ueda ◽  
K Tamura ◽  
...  

Malignant CD4+ T cells in adult T-cell leukemia/lymphoma (ATL) and cutaneous T-cell lymphoma (CTCL) express a number of cell surface molecules that are upregulated on normal T cells activated by foreign antigen. In this report we describe an interesting exception to the parallel phenotypic features of activated T cells and malignant CD4+ T cells. A monoclonal antibody (MoAb; termed 27.2) that was raised to HTLV-1+, CD4+25+ leukemic T cells stained weakly 25% of peripheral T cells, including approximately 50% of CD8+ T cells and 20% of CD4+ T cells. Flow cytometry analysis indicated that the surface density of the 27.2 antigen was unchanged or diminished when normal T cells were activated by antigen. However, 3/4 Sezary cases and 4/8 cases of ATL had relatively high densities of the 27.2 antigen. Immunoprecipitation and sodium dodecylsulfate polyacrylamide gel electrophoresis of the NP- 40-solubilized membranes of surface-iodinated ATL cells indicated that MoAb 27.2 reacted with a 75 Kd molecule. The size and distribution of the 27.2 antigen on T cell subsets suggested that it might be the enzyme ecto-5′ nucleotidase (NT), a phosphatidylinositol-linked enzyme that catalyzes dephosphorylation of monophosphate nucleotides to their respective nucleosides. This was confirmed by demonstrating that lymphocyte ecto-5′NT activity was blocked partially and inhibited completely by preincubating cells with MoAb 27.2 for 1 hour at 4 degrees C and 24 hours at 37 degrees C, respectively. When used with a second MoAb (27.1) to a novel T cell activation antigen found on all CTCL and ATL leukemias examined, 27.2 was found to discriminate between normal and leukemic T cells in two patients with ATL. These studies suggest that ecto-5′NT has diagnostic value in T cell malignancies and may be aberrantly expressed in some cases of ATL and CTCL.


2011 ◽  
Vol 102 (3) ◽  
pp. 569-577 ◽  
Author(s):  
Yamin Tian ◽  
Seiichro Kobayashi ◽  
Nobuhiro Ohno ◽  
Masamichi Isobe ◽  
Mayuko Tsuda ◽  
...  

Retrovirology ◽  
2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Morgan Thénoz ◽  
Céline Vernin ◽  
Hussein Mortada ◽  
Maroun Karam ◽  
Christiane Pinatel ◽  
...  

Blood ◽  
1989 ◽  
Vol 74 (7) ◽  
pp. 2486-2492 ◽  
Author(s):  
Y Fukunaga ◽  
SS Evans ◽  
M Yamamoto ◽  
Y Ueda ◽  
K Tamura ◽  
...  

Abstract Malignant CD4+ T cells in adult T-cell leukemia/lymphoma (ATL) and cutaneous T-cell lymphoma (CTCL) express a number of cell surface molecules that are upregulated on normal T cells activated by foreign antigen. In this report we describe an interesting exception to the parallel phenotypic features of activated T cells and malignant CD4+ T cells. A monoclonal antibody (MoAb; termed 27.2) that was raised to HTLV-1+, CD4+25+ leukemic T cells stained weakly 25% of peripheral T cells, including approximately 50% of CD8+ T cells and 20% of CD4+ T cells. Flow cytometry analysis indicated that the surface density of the 27.2 antigen was unchanged or diminished when normal T cells were activated by antigen. However, 3/4 Sezary cases and 4/8 cases of ATL had relatively high densities of the 27.2 antigen. Immunoprecipitation and sodium dodecylsulfate polyacrylamide gel electrophoresis of the NP- 40-solubilized membranes of surface-iodinated ATL cells indicated that MoAb 27.2 reacted with a 75 Kd molecule. The size and distribution of the 27.2 antigen on T cell subsets suggested that it might be the enzyme ecto-5′ nucleotidase (NT), a phosphatidylinositol-linked enzyme that catalyzes dephosphorylation of monophosphate nucleotides to their respective nucleosides. This was confirmed by demonstrating that lymphocyte ecto-5′NT activity was blocked partially and inhibited completely by preincubating cells with MoAb 27.2 for 1 hour at 4 degrees C and 24 hours at 37 degrees C, respectively. When used with a second MoAb (27.1) to a novel T cell activation antigen found on all CTCL and ATL leukemias examined, 27.2 was found to discriminate between normal and leukemic T cells in two patients with ATL. These studies suggest that ecto-5′NT has diagnostic value in T cell malignancies and may be aberrantly expressed in some cases of ATL and CTCL.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 265-265
Author(s):  
Francesco Di Meo ◽  
Christina Yu ◽  
Annamaria Cesarano ◽  
Aljoufi Arafat ◽  
Silvia Marino ◽  
...  

Abstract Multiple myeloma (MM) is an incurable malignancy of mature plasma cells. Despite major advances in the therapeutic armamentarium of MM, only 50% of patients survive more than 5 years after diagnosis, with significantly lower rates (21%) for high-risk patients. Chimeric Antigen Receptor (CAR) T-cell therapy targeting BCMA (B-cell maturation antigen) shows high response rates in relapsed/refractory patients. However, most patients have disease remission that lasts less than 18 months, prompting the search for additional and synergistic therapeutic approaches. We unbiasedly mapped the cell surface proteome of MM by integrating Mass-Spectrometry (MS) and RNA-seq analyses from 7 MM cell lines and 904 primary MM patient samples bearing high-risk cytogenetics. To identify cell surface proteins, we ran a pool of 4,761 proteins and 16,000+ transcripts through five repositories. An integrated scoring database was developed by scoring each ID based on the number of databases (0-5) it was identified in, with 0 if the molecule was not found in any and 5 if the protein was found in all five. We identified 402 proteins with a surface score of 3 or higher in MM cell lines and patient samples by transcriptomics and proteomics. We prioritized the 326 candidates that were more highly expressed in patients. Based on functional enrichment analyses, we found the proteins formed three main networks with immune mechanisms representing the largest cluster (227 out of 326 cell surface proteins) followed by transporters and adhesion proteins.Based on a pipeline we previously established (1), we further selected 97 candidates minimally expressed in normal tissues. This list included current therapeutic targets such as BCMA, SLAMF7, ITGB7 and LY9. Validation in primary patient samples by western blot and flow-cytometric analyses, enabled the identification of 10 top candidates (CCR1, CD320, FCRL3, IL12RB1, ITGA4, LAX1, LILRB4, LRRC8D, SEMA4A, SLAMF6) that resulted most frequently and highly expressed. We found that LAX1, LILRB4 and SEMA4A significantly impact myeloma patient overall survival based on Kaplan-Meier analysis in the MM Research Foundation (MMRF) cohort (2). CCR1, IL12RB1, LILRB4 and SEMA4A were upregulated by the treatment with Bortezomib or Venetoclax that conversely, decreased BCMA expression in MM U266 cells. By stratifying the patient population, we found that the SEMA4A and LAX1 were up-regulated in patients with t(4;14) compared to patients with no cytogenetic abnormality; LILRB4 in patients with t(14;16) and CCR1 patients with t(14;16) and t(14;20). By calculating co-expression levels CCR1-LILRB4 and CCR1-FCRL3 resulted co-expressed in 100% of patients. For safety purposes (3), we excluded candidates with high (>55%) protein abundance in highly-purified normal hematopoietic stem cells and activated T-cells, narrowing down the list to 6 top candidates (CCR1, FCRL3, IL12RB1, LILRB4, LRRC8D, SEMA4A). To define the function of this group of promising cell surface targets, we used a CRISPR/Cas9 inducible system in KMS11 MM cells. We found that knock-out of CCR1, LRRC8D and SEMA4A individually reduces the MM cell growth by ~60%, 50% and 50% respectively, and almost completely abrogates MM cell migration through porous chambers by >80%. By co-culturing irradiated KO and control MM cells with healthy donor T-cells we also found that lack of CCR1 increased T-cell proliferation by 50% compared to controls and enhanced killing of MM cells, suggesting that CCR1 may suppress T-cell mediated immune responses in addition to play a role in MM cell survival and migration. This study suggests the contribution of an altered MM surfaceome to disease development and may lead to potential novel immunotherapeutic approaches for high-risk MM. References 1. Perna F et al., Cancer Cell 2017 3. Dong C et al., in press Oncogene 2021 Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document