scholarly journals HTLV-1-infected CD4+ T-cells display alternative exon usages that culminate in adult T-cell leukemia

Retrovirology ◽  
2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Morgan Thénoz ◽  
Céline Vernin ◽  
Hussein Mortada ◽  
Maroun Karam ◽  
Christiane Pinatel ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (13) ◽  
pp. 3609-3612 ◽  
Author(s):  
Andrea K. Kress ◽  
Martina Kalmer ◽  
Aileen G. Rowan ◽  
Ralph Grassmann ◽  
Bernhard Fleckenstein

AbstractOncogenic transformation of CD4+ T cells by human T-cell lymphotropic virus type 1 (HTLV-1) is understood as the initial step to adult T-cell leukemia/lymphoma, a process that is mainly initiated by perturbation of cellular signaling by the viral Tax oncoprotein, a potent transcriptional regulator. In search of novel biomarkers with relevance to oncogenesis, we identified the tumor marker and actin-bundling protein Fascin (FSCN1) to be specifically and strongly up-regulated in both HTLV-1–transformed and adult T-cell leukemia/lymphoma patient-derived CD4+ T cells. Fascin is important for migration and metastasis in various types of cancer. Here we report that a direct link can exist between a single viral oncoprotein and Fascin expression, as the viral oncoprotein Tax was sufficient to induce high levels of Fascin. Nuclear factor-κB signals were important for Tax-mediated transcriptional regulation of Fascin in T cells. This suggests that Fascin up-regulation by Tax contributes to the development of HTLV-1–associated pathogenesis.


2007 ◽  
Vol 121 (12) ◽  
pp. 2585-2590 ◽  
Author(s):  
Takatoshi Shimauchi ◽  
Kenji Kabashima ◽  
Daiki Nakashima ◽  
Kazunari Sugita ◽  
Yoko Yamada ◽  
...  

Blood ◽  
1989 ◽  
Vol 74 (7) ◽  
pp. 2486-2492
Author(s):  
Y Fukunaga ◽  
SS Evans ◽  
M Yamamoto ◽  
Y Ueda ◽  
K Tamura ◽  
...  

Malignant CD4+ T cells in adult T-cell leukemia/lymphoma (ATL) and cutaneous T-cell lymphoma (CTCL) express a number of cell surface molecules that are upregulated on normal T cells activated by foreign antigen. In this report we describe an interesting exception to the parallel phenotypic features of activated T cells and malignant CD4+ T cells. A monoclonal antibody (MoAb; termed 27.2) that was raised to HTLV-1+, CD4+25+ leukemic T cells stained weakly 25% of peripheral T cells, including approximately 50% of CD8+ T cells and 20% of CD4+ T cells. Flow cytometry analysis indicated that the surface density of the 27.2 antigen was unchanged or diminished when normal T cells were activated by antigen. However, 3/4 Sezary cases and 4/8 cases of ATL had relatively high densities of the 27.2 antigen. Immunoprecipitation and sodium dodecylsulfate polyacrylamide gel electrophoresis of the NP- 40-solubilized membranes of surface-iodinated ATL cells indicated that MoAb 27.2 reacted with a 75 Kd molecule. The size and distribution of the 27.2 antigen on T cell subsets suggested that it might be the enzyme ecto-5′ nucleotidase (NT), a phosphatidylinositol-linked enzyme that catalyzes dephosphorylation of monophosphate nucleotides to their respective nucleosides. This was confirmed by demonstrating that lymphocyte ecto-5′NT activity was blocked partially and inhibited completely by preincubating cells with MoAb 27.2 for 1 hour at 4 degrees C and 24 hours at 37 degrees C, respectively. When used with a second MoAb (27.1) to a novel T cell activation antigen found on all CTCL and ATL leukemias examined, 27.2 was found to discriminate between normal and leukemic T cells in two patients with ATL. These studies suggest that ecto-5′NT has diagnostic value in T cell malignancies and may be aberrantly expressed in some cases of ATL and CTCL.


2011 ◽  
Vol 102 (3) ◽  
pp. 569-577 ◽  
Author(s):  
Yamin Tian ◽  
Seiichro Kobayashi ◽  
Nobuhiro Ohno ◽  
Masamichi Isobe ◽  
Mayuko Tsuda ◽  
...  

Blood ◽  
1989 ◽  
Vol 74 (7) ◽  
pp. 2486-2492 ◽  
Author(s):  
Y Fukunaga ◽  
SS Evans ◽  
M Yamamoto ◽  
Y Ueda ◽  
K Tamura ◽  
...  

Abstract Malignant CD4+ T cells in adult T-cell leukemia/lymphoma (ATL) and cutaneous T-cell lymphoma (CTCL) express a number of cell surface molecules that are upregulated on normal T cells activated by foreign antigen. In this report we describe an interesting exception to the parallel phenotypic features of activated T cells and malignant CD4+ T cells. A monoclonal antibody (MoAb; termed 27.2) that was raised to HTLV-1+, CD4+25+ leukemic T cells stained weakly 25% of peripheral T cells, including approximately 50% of CD8+ T cells and 20% of CD4+ T cells. Flow cytometry analysis indicated that the surface density of the 27.2 antigen was unchanged or diminished when normal T cells were activated by antigen. However, 3/4 Sezary cases and 4/8 cases of ATL had relatively high densities of the 27.2 antigen. Immunoprecipitation and sodium dodecylsulfate polyacrylamide gel electrophoresis of the NP- 40-solubilized membranes of surface-iodinated ATL cells indicated that MoAb 27.2 reacted with a 75 Kd molecule. The size and distribution of the 27.2 antigen on T cell subsets suggested that it might be the enzyme ecto-5′ nucleotidase (NT), a phosphatidylinositol-linked enzyme that catalyzes dephosphorylation of monophosphate nucleotides to their respective nucleosides. This was confirmed by demonstrating that lymphocyte ecto-5′NT activity was blocked partially and inhibited completely by preincubating cells with MoAb 27.2 for 1 hour at 4 degrees C and 24 hours at 37 degrees C, respectively. When used with a second MoAb (27.1) to a novel T cell activation antigen found on all CTCL and ATL leukemias examined, 27.2 was found to discriminate between normal and leukemic T cells in two patients with ATL. These studies suggest that ecto-5′NT has diagnostic value in T cell malignancies and may be aberrantly expressed in some cases of ATL and CTCL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2516-2516
Author(s):  
Haruka Kinosada ◽  
Jun-ichirou Yasunaga ◽  
Kazuya Shimura ◽  
Masao Matsuoka

Abstract Introduction Adult T-cell leukemia (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1). It has been reported that co-inhibitory receptors such as programmed cell death 1 (PD-1) and T cell immunoglobulin and ITIM domain (TIGIT) are highly expressed on ATL cells and HTLV-1 infected cells. However, ATL cells and HTLV-1 infected cells proliferate regardless of their high expression. Although it has been known that HTLV-1 bZIP factor (HBZ), which is constitutively expressed in ATL cells and HTLV-1 infected cells, promotes T cell proliferation, the detailed mechanisms remain unclear. In this study, we found that HBZ promotes T-cell proliferation by interfering the suppressive function of co-inhibitory receptors. Methods We analyzed T-cell proliferation of HBZ transgenic (HBZ-Tg) mice that specifically express HBZ in CD4+ T cells, and expression of co-inhibitory and co-stimulatory molecules on ATL cells and CD4+ T cells of HBZ-Tg mice. Furthermore, the function of TIGIT and PD-1 was studied using HBZ-transduced murine CD4+T cells. The co-localization of SHP-2 and PD-1 in the presence of HBZ was analyzed by immunoprecipitation and confocal microscope. The immunoprecipitation and confocal microscope were also used to analyze interaction between HBZ and THEMIS and HBZ localization in the presence of THEMIS. Results Although HBZ promotes T-cell proliferation, we found that some co-inhibitory receptors, TIGIT and PD-1, were highly expressed on CD4+ T cells of HBZ-Tg mice and ATL cells. As mechanisms, HBZ upregulated transcriptions of these genes. Based on these observations, we hypothesized that HBZ impairs suppressive functions of TIGIT and PD-1 while it increases expression of these co-inhibitory receptors. To address this question, we analyzed the suppressive activity of TIGIT and PD-1 in the presence of HBZ. We transduced HBZ by the retrovirus vector into primary murine T cells and evaluated the proliferation after stimulated TIGIT or PD-1 with anti-CD3 and its ligand. As a result, TIGIT and PD-1 did not inhibit T-cell proliferation in the presence of HBZ, indicating that HBZ impairs the suppressive function of TIGIT and PD-1. Both TIGIT and PD-1 possess SHP-2, a tyrosine phosphatase, binding domains in its cytoplasmic tail, ITIM or ITSM motif. Therefore, we next studied whether HBZ influences the interaction between PD-1 and SHP-2. Tyrosine phosphorylation of PD-1 was induced with pervanadate and then SHP-2 recruitment and PD-1/SHP-2 co-localization were investigated. HBZ inhibited recruitment of SHP-2 to the ITSM motif of PD-1. Indeed, phosphorylation of SHP-2 was decreased in CD4+T cells of HBZ-Tg mice and HBZ-transduced murine primary T cells. Furthermore, function of SHP-2 to dephosphorylate ZAP-70 and CD3-zeta was suppressed in the presence of HBZ. These data showed that HBZ inhibited recruitment of SHP-2 to ITSM motif of PD-1 and suppressed its inhibitory function. Next, we examined how HBZ inhibits the interaction between PD-1 and SHP-2. HBZ did this by interacting with THEMIS, which forms a complex with Grb2 and SHP-2. Moreover, HBZ hindered the interaction between THEMIS and Grb2. In general, THEMIS is localized in the cytoplasm, whereas it has been reported that HBZ is localized in the nucleus. When we expressed THEMIS or HBZ, THEMIS existed in the cytoplasm (50 of 50 cells: 100%) whereas HBZ was mainly localized in the nucleus (67 of 74 cells: 90.5%). Interestingly, when both proteins were expressed in the same cells, HBZ changed its localization to cytoplasm (28 of 79 cells: 35.4%) and co-localized with THEMIS. These findings suggest that THEMIS changes the localization of HBZ from nucleus to cytoplasm. Thus, HBZ functions not only in the nucleus but also in the cytoplasm by interacting with host factors. Since THEMIS is expressed only in T-lineage cells, inhibition of the suppressive effects of co-inhibitory receptors by HBZ accounts for how HTLV-1 induced proliferation only T cells in vivo. Conclusions Our findings demonstrated that HBZ promotes T-cell proliferation upon TCR stimulation by impairing the suppressive signal of co-inhibitory receptors. This study presents the first evidence of mechanisms how HBZ attenuates the inhibitory signals and promotes T-cell proliferation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5163-5172 ◽  
Author(s):  
Jing Chen ◽  
Mike Petrus ◽  
Bonita R. Bryant ◽  
Vinh Phuc Nguyen ◽  
Mindy Stamer ◽  
...  

AbstractThe etiologic agent of adult T-cell leukemia (ATL) is human T cell lymphotropic virus type I (HTLV-I). The HTLV-I protein Tax alters gene expression, including those of cytokines and their receptors, which plays an important role in early stages of ATL. Here we demonstrate that expression of interleukin-9 (IL-9) is activated by Tax via an NF-κB motif in its proximal promoter, whereas IL-9 receptor-α (IL-9Rα) expression is not induced by Tax. However, supporting a role for IL-9/IL-9Rα in ATL, a neutralizing monoclonal antibody directed toward IL-9Rα inhibited ex vivo spontaneous proliferation of primary ATL cells from several patients. Fluorescence-activated cell sorter analysis of freshly isolated peripheral blood mononuclear cells from these patients revealed high level expression of IL-9Rα on their CD14-expressing monocytes. Furthermore, purified T cells or monocytes alone from these patients did not proliferate ex vivo, whereas mixtures of these cell types manifested significant proliferation through a contact-dependent manner. Taken together, our data suggest that primary ATL cells, via IL-9, support the action of IL-9Rα/CD14-expressing monocytes, which subsequently support the ex vivo spontaneous proliferation of malignant T cells. In summary, these data support a role for IL-9 and its receptor in ATL by a paracrine mechanism.


2016 ◽  
Vol 12 (11) ◽  
pp. e1006030 ◽  
Author(s):  
Aileen G. Rowan ◽  
Aviva Witkover ◽  
Anat Melamed ◽  
Yuetsu Tanaka ◽  
Lucy B. M. Cook ◽  
...  

2005 ◽  
Vol 96 (8) ◽  
pp. 527-533 ◽  
Author(s):  
Tomoko Kohno ◽  
Yasuaki Yamada ◽  
Norihiko Akamatsu ◽  
Simeru Kamihira ◽  
Yoshitaka Imaizumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document