Abstract 1165: Focal adhesion kinase (FAK) mediates fibroblast-induced HER2+ breast cancer cell migration and invasion through a mechanism involving Stat3

Author(s):  
Glorianne Lazaro ◽  
Chris Smith ◽  
Stephen Hiscox
2021 ◽  
Author(s):  
Hemayet Ullah ◽  
Nagib Ahsan ◽  
Sivanesan Dakshanamurthy

Scaffold protein RACK1 mediates cancer cell migration mostly through regulation of focal adhesion (FA) assembly by promoting a focal adhesion kinase (FAK) activation downstream of the integrin clustering and adhesion at the extracellular matrix (ECM). Here we demonstrated the efficacy of our recently developed RACK1 Y246 phosphorylation inhibitor compounds (SD29 and SD29-14) to inhibit the migration and invasion of MCF7 and MDA-MB-231 breast cancer cell lines. Using multiple assays, our results confirmed that inhibitor compounds effectively prevent the filopodia/lamellipodia development and inhibits the migration of breast cancer cells. A mechanistic model of the inhibitor compounds has been developed. Migration and invasion capabilities of the cancer cells define the metastasis of cancer. Thus, our results suggest a potential therapeutic mechanism of the inhibitors to prevent metastasis in diverse cancers.


2019 ◽  
Vol 12 (6) ◽  
pp. 424-437 ◽  
Author(s):  
Xiaoyu Song ◽  
Wanjuan Wang ◽  
Haowei Wang ◽  
Xiao Yuan ◽  
Fengrui Yang ◽  
...  

Abstract Ezrin, a membrane–cytoskeleton linker protein, plays an essential role in cell polarity establishment, cell migration, and division. Recent studies show that ezrin phosphorylation regulates breast cancer metastasis by promoting cancer cell survivor and promotes intrahepatic metastasis via cell migration. However, it was less characterized whether there are additional post-translational modifications and/or post-translational crosstalks on ezrin underlying context-dependent breast cancer cell migration and invasion. Here we show that ezrin is acetylated by p300/CBP-associated factor (PCAF) in breast cancer cells in response to CCL18 stimulation. Ezrin physically interacts with PCAF and is a cognate substrate of PCAF. The acetylation site of ezrin was mapped by mass spectrometric analyses, and dynamic acetylation of ezrin is essential for CCL18-induced breast cancer cell migration and invasion. Mechanistically, the acetylation reduced the lipid-binding activity of ezrin to ensure a robust and dynamic cycling between the plasma membrane and cytosol in response to CCL18 stimulation. Biochemical analyses show that ezrin acetylation prevents the phosphorylation of Thr567. Using atomic force microscopic measurements, our study revealed that acetylation of ezrin induced its unfolding into a dominant structure, which prevents ezrin phosphorylation at Thr567. Thus, these results present a previously undefined mechanism by which CCL18-elicited crosstalks between the acetylation and phosphorylation on ezrin control breast cancer cell migration and invasion. This suggests that targeting PCAF signaling could be a potential therapeutic strategy for combating hyperactive ezrin-driven cancer progression.


2013 ◽  
Vol 333 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Xiaojing Meng ◽  
Chunqing Cai ◽  
Jiguo Wu ◽  
Shaoxi Cai ◽  
Changsheng Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document