Abstract 330: Engineering electrophile-sensitive kinase mutants to accelerate oncology target validation

Author(s):  
Jon A. Oyer ◽  
Ted W. Johnson ◽  
Andrew C. Wang ◽  
Michael F. Maestre ◽  
Ana Flores-Bojorquez ◽  
...  
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasaman Shamshirgaran ◽  
Anna Jonebring ◽  
Anna Svensson ◽  
Isabelle Leefa ◽  
Mohammad Bohlooly-Y ◽  
...  

AbstractRecent advances in induced pluripotent stem cells (iPSCs), genome editing technologies and 3D organoid model systems highlight opportunities to develop new in vitro human disease models to serve drug discovery programs. An ideal disease model would accurately recapitulate the relevant disease phenotype and provide a scalable platform for drug and genetic screening studies. Kidney organoids offer a high cellular complexity that may provide greater insights than conventional single-cell type cell culture models. However, genetic manipulation of the kidney organoids requires prior generation of genetically modified clonal lines, which is a time and labor consuming procedure. Here, we present a methodology for direct differentiation of the CRISPR-targeted cell pools, using a doxycycline-inducible Cas9 expressing hiPSC line for high efficiency editing to eliminate the laborious clonal line generation steps. We demonstrate the versatile use of genetically engineered kidney organoids by targeting the autosomal dominant polycystic kidney disease (ADPKD) genes: PKD1 and PKD2. Direct differentiation of the respective knockout pool populations into kidney organoids resulted in the formation of cyst-like structures in the tubular compartment. Our findings demonstrated that we can achieve > 80% editing efficiency in the iPSC pool population which resulted in a reliable 3D organoid model of ADPKD. The described methodology may provide a platform for rapid target validation in the context of disease modeling.


2006 ◽  
Vol 11 (15-16) ◽  
pp. 708-716 ◽  
Author(s):  
Ryan T. Strachan ◽  
Gina Ferrara ◽  
Bryan L. Roth

2004 ◽  
Vol 3 (5) ◽  
pp. 191-197 ◽  
Author(s):  
Thanh N. Doan ◽  
Carmen D. Eilertson ◽  
Amy L. Rubinstein

2015 ◽  
Vol 72 (9) ◽  
pp. 1779-1794 ◽  
Author(s):  
Kärt Varendi ◽  
Kert Mätlik ◽  
Jaan-Olle Andressoo

2021 ◽  
Author(s):  
Raphael R. Steimbach ◽  
Corey J. Herbst-Gervasoni ◽  
Glynis Klinke ◽  
Magalie Géraldy ◽  
Gergely Tihanyi ◽  
...  

We report the first selective chemical probes for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group (“aza-scan”) into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one atom replacement (C-->N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded DKFZ-748, which has a double-digit nanomolar IC50 against HDAC10 in cells and >500-fold selectivity over the closest relative HDAC6 as well as the Class I enzymes (HDAC1, 2, 3, 8). Potency of our aza-SAHA derivatives is rationalized with HDAC10 co-crystal structures and demonstrated by cellular and biochemical target-engagement, as well as thermal-shift, assays. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, confirmed for the first time the suspected cellular function of HDAC10 as a poly-amine deacetylase. Selective HDAC10 chemical probes provide a valuable pharmacological tool for target validation and will enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines. HDAC10-selective aza-SAHA derivatives are not cytotoxic, which opens the doors to novel therapeutic applications as immunomodulators or in combination cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document