Aza-SAHA Derivatives are Selective Histone Deacetylase 10 Chemical Probes That Inhibit Polyamine Deacetylation

Author(s):  
Raphael R. Steimbach ◽  
Corey J. Herbst-Gervasoni ◽  
Glynis Klinke ◽  
Magalie Géraldy ◽  
Gergely Tihanyi ◽  
...  

We report the first selective chemical probes for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group (“aza-scan”) into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one atom replacement (C-->N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded DKFZ-748, which has a double-digit nanomolar IC50 against HDAC10 in cells and >500-fold selectivity over the closest relative HDAC6 as well as the Class I enzymes (HDAC1, 2, 3, 8). Potency of our aza-SAHA derivatives is rationalized with HDAC10 co-crystal structures and demonstrated by cellular and biochemical target-engagement, as well as thermal-shift, assays. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, confirmed for the first time the suspected cellular function of HDAC10 as a poly-amine deacetylase. Selective HDAC10 chemical probes provide a valuable pharmacological tool for target validation and will enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines. HDAC10-selective aza-SAHA derivatives are not cytotoxic, which opens the doors to novel therapeutic applications as immunomodulators or in combination cancer therapy.

2016 ◽  
Vol 14 (26) ◽  
pp. 6179-6183 ◽  
Author(s):  
Hua Xu ◽  
Ariamala Gopalsamy ◽  
Erik C. Hett ◽  
Shores Salter ◽  
Ann Aulabaugh ◽  
...  

Proof of drug-target engagement in physiologically-relevant contexts is a key pillar of successful therapeutic target validation.


2017 ◽  
Author(s):  
Carlos Moreno-Yruela ◽  
Iacopo Galleano ◽  
Andreas S. Madsen ◽  
Christian A. Olsen

SUMMARYHistone deacetylase (HDAC) enzymes are important regulators of diverse biological function, including gene expression, rendering them potential targets for intervention in a number of diseases, with a handful of compounds approved for treatment of certain hematologic cancers. Among the human zinc-dependent HDACs, the most recently discovered member, HDAC11, is the only member assigned to subclass IV, the smallest protein, and the least well understood with regards to biological function. Here we show that HDAC11 cleaves long chain acyl modifications on lysine side chains with remarkable efficiency compared to acetyl groups. We further show that several common types of HDAC inhibitors, including the approved drugs romidepsin and vorinostat, do not inhibit this enzymatic activity. Macrocyclic hydroxamic acid-containing peptides, on the other hand, potently inhibit HDAC11 demyristoylation activity. These findings should be taken carefully into consideration in future investigations of the biological function of HDAC11 and will serve as a foundation for the development of selective chemical probes targeting HDAC11.


Author(s):  
Jonathan D. Mortison ◽  
Ivan Cornella-Taracido ◽  
Gireedhar Venkatchalam ◽  
Anthony W. Partridge ◽  
Nirodhini Siriwardana ◽  
...  

Leukemia ◽  
2013 ◽  
Vol 28 (3) ◽  
pp. 680-689 ◽  
Author(s):  
J Minami ◽  
R Suzuki ◽  
R Mazitschek ◽  
G Gorgun ◽  
B Ghosh ◽  
...  

Science ◽  
2013 ◽  
Vol 341 (6141) ◽  
pp. 84-87 ◽  
Author(s):  
Daniel Martinez Molina ◽  
Rozbeh Jafari ◽  
Marina Ignatushchenko ◽  
Takahiro Seki ◽  
E. Andreas Larsson ◽  
...  

The efficacy of therapeutics is dependent on a drug binding to its cognate target. Optimization of target engagement by drugs in cells is often challenging, because drug binding cannot be monitored inside cells. We have developed a method for evaluating drug binding to target proteins in cells and tissue samples. This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. Using this assay, we validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues. CETSA is likely to become a valuable tool for the validation and optimization of drug target engagement.


2013 ◽  
Vol 56 (21) ◽  
pp. 8257-8269 ◽  
Author(s):  
Ku-Lung Hsu ◽  
Katsunori Tsuboi ◽  
Landon R. Whitby ◽  
Anna E. Speers ◽  
Holly Pugh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document