Abstract 375: High tumor mutation burden predicts unfavorable clinical outcome in EGFR-mutated lung adenocarcinoma treated with targeted therapy

Author(s):  
Seung Hyeun Lee ◽  
Ji-Youn Sung
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuto Yoneshima ◽  
Eiji Iwama ◽  
Shingo Matsumoto ◽  
Taichi Matsubara ◽  
Testuzo Tagawa ◽  
...  

AbstractGenetic alterations underlying the development of lung cancer in individuals with idiopathic pulmonary fibrosis (IPF) have remained unclear. To explore whether genetic alterations in IPF tissue contribute to the development of IPF-associated lung cancer, we here evaluated tumor mutation burden (TMB) and somatic variants in 14 paired IPF and tumor samples from patients with IPF-associated lung adenocarcinoma. We also determined TMB for 22 samples of lung adenocarcinoma from patients without IPF. TMB for IPF-associated lung adenocarcinoma was significantly higher than that for matched IPF tissue (median of 2.94 vs. 1.26 mutations/Mb, P = 0.002). Three and 102 somatic variants were detected in IPF and matched lung adenocarcinoma samples, respectively, with only one pair of specimens sharing one somatic variant. TMB for IPF-associated lung adenocarcinoma was similar to that for lung adenocarcinoma samples with driver mutations (median of 2.94 vs. 2.51 mutations/Mb) and lower than that for lung adenocarcinoma samples without known driver mutations (median of 2.94 vs. 5.03 mutations/Mb, P = 0.130) from patients without IPF. Our findings suggest that not only the accumulation of somatic mutations but other factors such as inflammation and oxidative stress might contribute to the development and progression of lung cancer in patients with IPF.


2021 ◽  
Author(s):  
Zhenyu Zhao ◽  
Boxue He ◽  
Qidong Cai ◽  
Pengfei Zhang ◽  
Xiong Peng ◽  
...  

Abstract Background: Lung adenocarcinoma (LUAD) accounts for a majority of cancer-related deaths worldwide annually. A recent study shows that immunotherapy is an effective method of LUAD treatment, and tumor mutation burden (TMB) was associated with the immune microenvironment and affected the immunotherapy. Exploration of the gene signature associated with tumor mutation burden and immune infiltrates in predicting prognosis in lung adenocarcinoma in this study, we explored the correlation of TMB with immune infiltration and prognosis in LUAD.Materials and Methods: In this study, we firstly got mutation data and LUAD RNA-Seq data of the LUAD from The Cancer Genome Atlas (TCGA), and according to the TMB we divided the patients into high/low-TMB levels groups. The gene ontology (GO) pathway enrichment analysis and KOBAS-Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were utilized to explore the molecular function of the differentially expressed genes (DEGs) between the two groups. The function enrichment analyses of DEGs were related to the immune pathways. Then, the ESTIMATE algorithm, CIBERSORT, and ssGSEA analysis were utilized to identify the relationship between TMB subgroups and immune infiltration. According to the results, Venn analysis was utilized to select the immune-related genes in DEGs. Univariate and Lasso Cox proportional hazards regression analyses were performed to construct the signature which positively associated with the immune infiltration and affected the survival. Finally, we verified the correlation between the signature and immune infiltration. Result: The exploration of the immune infiltration suggested that high-TMB subgroups positively associated with the high level of immune infiltration in LUAD patients. According to the TMB-related immune signature, the patients were divided into High/Low-risk groups, and the high-risk group was positively associated with poor prognostic. The results of the PCA analysis confirmed the validity of the signature. We also verified the effectiveness of the signature in GSE30219 and GSE72094 datasets. The ROC curves and C-index suggested the good clinical application of the TMB-related immune signature in LUAD prognosis. Another result suggested that the patients of the high-risk group were positively associated with higher TMB levels, PD-L1expression, and immune infiltration levels.Conclusion: In conclusion, our signature provides potential biomarkers for studying aspects of the TMB in LUAD such as TMB affected immune microenvironment and prognosis. This signature may provide some biomarkers which could improve the biomarkers of PD-L1 immunotherapy response and were inverted for the clinical application of the TMB in LUAD. LUAD male patients with higher TMB-levels and risk scores may benefit from immunotherapy. The high-risk patients along with higher PD-L1 expression of the signature may suitable for immunotherapy and improve their survival by detecting the TMB of LUAD.


Oncotarget ◽  
2016 ◽  
Vol 7 (16) ◽  
pp. 22857-22864 ◽  
Author(s):  
Dakai Xiao ◽  
Hui Pan ◽  
Fuqiang Li ◽  
Kui Wu ◽  
Xin Zhang ◽  
...  

2019 ◽  
Vol 11 (11) ◽  
pp. 4507-4515 ◽  
Author(s):  
Xiao-Dong Jiao ◽  
Xi He ◽  
Bao-Dong Qin ◽  
Ke Liu ◽  
Ying Wu ◽  
...  

2018 ◽  
Vol 230 ◽  
pp. 181-185 ◽  
Author(s):  
Masayuki Nagahashi ◽  
Seijiro Sato ◽  
Kizuki Yuza ◽  
Yoshifumi Shimada ◽  
Hiroshi Ichikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document