Abstract IA21: Combination treatments that include PI3K-inhibitors for the treatment of triple-negative breast cancer

Author(s):  
Gerburg M. Wulf ◽  
Ashish Juvekar ◽  
Costas M. Lyssiotis ◽  
Hai Hu ◽  
Kim Baek ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3857
Author(s):  
Zhanfang Guo ◽  
Tina Primeau ◽  
Jingqin Luo ◽  
Cynthia Zhang ◽  
Hua Sun ◽  
...  

PI3K pathway activation is frequently observed in triple negative breast cancer (TNBC). However, single agent PI3K inhibitors have shown limited anti-tumor activity. To investigate biomarkers of response and resistance mechanisms, we tested 17 TNBC patient-derived xenograft (PDX) models representing diverse genomic backgrounds and varying degrees of PI3K pathway signaling activities for their tumor growth response to the pan-PI3K inhibitor, BKM120. Baseline and post-treatment PDX tumors were subjected to reverse phase protein array (RPPA) to identify protein markers associated with tumor growth response. While BKM120 consistently reduced PI3K pathway activity, as demonstrated by reduced levels of phosphorylated AKT, percentage tumor growth inhibition (%TGI) ranged from 35% in the least sensitive to 84% in the most sensitive model. Several biomarkers showed significant association with resistance, including elevated baseline levels of growth factor receptors (EGFR, pHER3 Y1197), PI3Kp85 regulatory subunit, anti-apoptotic protein BclXL, EMT (Vimentin, MMP9, IntegrinaV), NFKB pathway (IkappaB, RANKL), and intracellular signaling molecules including Caveolin, CBP, and KLF4, as well as treatment-induced increases in the levels of phosphorylated forms of Aurora kinases. Interestingly, increased AKT phosphorylation or PTEN loss at baseline were not significantly correlated to %TGI. These results provide important insights into biomarker development for PI3K inhibitors in TNBC.


2021 ◽  
Vol 14 (10) ◽  
pp. 1035
Author(s):  
Dominick Salerno ◽  
Stavroula Sofou

Combinations of platinum-based compounds with doxorubicin in free and/or in liposomal form for improved safety are currently being evaluated in the neoadjuvant setting on patients with advanced triple-negative breast cancer (TNBC). However, TNBC may likely be driven by chemotherapy-resistant cells. Additionally, established TNBC tumors may also exhibit diffusion-limited transport, resulting in heterogeneous intratumoral delivery of the administered therapeutics; this limits therapeutic efficacy in vivo. We studied TNBC cells with variable chemosensitivities, in the absence (on monolayers) and presence (in 3D multicellular spheroids) of transport barriers; we compared the combined killing effect of free doxorubicin and free cisplatin to the killing effect (1) of conventional liposomal forms of the two chemotherapeutics, and (2) of tumor-responsive lipid nanoparticles (NP), specifically engineered to result in more uniform spatiotemporal microdistributions of the agents within solid tumors. This was enabled by the NP properties of interstitial release, cell binding/internalization, and/or adhesion to the tumors’ extracellular matrix. The synergistic cell kill by combinations of the agents (in all forms), compared to the killing effect of each agent alone, was validated on monolayers of cells. Especially for spheroids formed by cells exhibiting resistance to doxorubicin combination treatments with both agents in free and/or in tumor-responsive NP-forms were comparably effective; we not only observed greater inhibition of outgrowth compared to the single agent(s) but also compared to the conventional liposome forms of the combined agents. We correlated this finding to more uniform spatiotemporal microdistributions of agents by the tumor-responsive NP. Our study shows that combinations of NP with properties specifically optimized to improve the spatiotemporal uniformity of the delivery of their corresponding therapeutic cargo can improve treatment efficacy while keeping favorable safety profiles.


Theranostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 1531-1543 ◽  
Author(s):  
Florence Coussy ◽  
Marion Lavigne ◽  
Leanne de Koning ◽  
Rania El Botty ◽  
Fariba Nemati ◽  
...  

2019 ◽  
Vol 19 (2) ◽  
pp. 261-277 ◽  
Author(s):  
Stamatia Rontogianni ◽  
Sedef Iskit ◽  
Sander van Doorn ◽  
Daniel S. Peeper ◽  
Maarten Altelaar

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with very limited therapeutic options. We have recently shown that the combined inhibition of EGFR and ROCK in TNBC cells results in cell death, however, the underlying mechanisms remain unclear. To investigate this, here we applied a mass spectrometry-based proteomic approach to identify proteins altered on single and combination treatments. Our proteomic data revealed autophagy as the major molecular mechanism implicated in the cells' response to combinatorial treatment. We here show that EGFR inhibition by gefitinib treatment alone induces autophagy, a cellular recycling process that acts as a cytoprotective response for TNBC cells. However, combined inhibition of EGFR and ROCK leads to autophagy blockade and accumulation of autophagic vacuoles. Our data show impaired autophagosome clearance as a likely cause of antitumor activity. We propose that the inhibition of the autophagic flux on combinatorial treatment is attributed to the major cytoskeletal changes induced on ROCK inhibition, given the essential role the cytoskeleton plays throughout the various steps of the autophagy process.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
AJ Robles ◽  
L Du ◽  
S Cai ◽  
RH Cichewicz ◽  
SL Mooberry

2020 ◽  
pp. 75-80
Author(s):  
S.A. Lyalkin ◽  
◽  
L.A. Syvak ◽  
N.O. Verevkina ◽  
◽  
...  

The objective: was to evaluate the efficacy of the first line chemotherapy in patients with metastatic triple negative breast cancer (TNBC). Materials and methods. Open randomized study was performed including 122 patients with metastatic TNBC. The efficacy and safety of the first line chemotherapy of regimens АТ (n=59) – group 1, patients received doxorubicine 60 мг/м2 and paclitaxel 175 мг/м2 and ТР (n=63) – group 2, patients received paclitaxel 175 мг/м2 and carboplatin AUC 5 were evaluated. Results. The median duration of response was 9.5 months (4.5–13.25 months) in patients received AT regimen and 8.5 months (4.7–12.25 months), in TP regimen; no statistically significant differences were observed, р=0.836. The median progression free survival was 7 months (95% CI 5–26 months) in group 1 and 7.5 months (95% CI 6–35 months) in group 2, p=0.85. Both chemotherapy regimens (AT and TP) had mild or moderate toxicity profiles (grade 1 or 2 in most patients). No significant difference in gastrointestinal toxicity was observed. The incidence of grade 3–4 neutropenia was higher in patients of group 2 (TP regimen): 42.8% versus 27% (р<0.05). Conclusions. Both regimens of chemotherapy (AT and TP) are appropriate to use in the first line setting in patients with metastatic TNBC. Key words: metastatic triple negative breast cancer, chemotherapy, progression free survival, chemotherapy toxicity.


Sign in / Sign up

Export Citation Format

Share Document