Chemotherapeutic stress influences epithelial-mesenchymal transition and stemness in cancer stem cells of triple‐negative breast cancer

2020 ◽  
Author(s):  
X Li ◽  
J Strietz ◽  
A Bleilevens ◽  
E Stickeler ◽  
J Maurer
2020 ◽  
Vol 21 (2) ◽  
pp. 404 ◽  
Author(s):  
Li ◽  
Strietz ◽  
Bleilevens ◽  
Stickeler ◽  
Maurer

Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by the absence of estrogen and progesterone receptors (ER, PR) and lacking an overexpression of human epidermal growth factor receptor 2 (HER2). Apart from this lack of therapeutic targets, TNBC also shows an increased capacity for early metastasis and therapy resistance. Currently, many TNBC patients receive neoadjuvant chemotherapy (NACT) upon detection of the disease. With TNBC likely being driven at least in part by a cancer stem-like cell type, we wanted to evaluate the response of primary cancer stem cells (CSCs) to standard chemotherapeutics. Therefore, we set up a survival model using primary CSCs to mimic tumor cells in patients under chemotherapy. Breast cancer stem cells (BCSCs) were exposed to chemotherapeutics with a sublethal dose for six days. Surviving cells were allowed to recover in culture medium without chemotherapeutics. Surviving and recovered cells were examined in regard to proliferation, migratory capacity, sphere forming capacity, epithelial–mesenchymal transition (EMT) factor expression at the mRNA level, and cancer-related microRNA (miRNA) profile. Our results indicate that chemotherapeutic stress enhanced sphere forming capacity of BCSCs, and changed cell morphology and EMT-related gene expression at the mRNA level, whereas the migratory capacity was unaffected. Six miRNAs were identified as potential regulators in this process.


Nanomedicine ◽  
2020 ◽  
Vol 15 (16) ◽  
pp. 1551-1565
Author(s):  
Sai Kiran SS Pindiprolu ◽  
Praveen T Krishnamurthy ◽  
Venkata Rao Ghanta ◽  
Pavan Kumar Chintamaneni

Aim: To study the active targeting efficacy of phenylboronic acid-modified niclosamide solid lipid nanoparticles (PBA-Niclo-SLN) in triple-negative breast cancer (TNBC). Materials & methods: PBA-Niclo-SLNs were formulated by an emulsification-solvent evaporation method using PBA-associated stearylamine (PBSA) as lipid. The drug uptake and the anticancer propensity of PBA-Niclo-SLN were studied in TNBC (MDA-MB231) cells and tumor-bearing mice. Results: PBA-Niclo-SLN formulation resulted in greater antitumor efficacy by inducing G0/G1 cell cycle arrest and apoptosis. Besides, PBA-Niclo-SLN effectively inhibited STAT3, CD44+/CD24- TNBC stem cell subpopulation, epithelial–mesenchymal transition markers. Besides, PBA-Niclo-SLN selectively accumulated at the tumor site with more significant tumor regression and improved the survivability in TNBC tumor-bearing mice. Conclusion: PBA-Niclo-SLN formulation would be an effective strategy to eradicate TNBC cells (breast cancer stem cells and nonbreast cancer stem cells) efficiently.


2020 ◽  
Vol 20 ◽  
Author(s):  
Acharya Balkrishna ◽  
Rashmi Mittal ◽  
Vedpriya Arya

Abstract:: Triple negative breast cancer present aggressive form of breast cancer subtype which further lacks efficient treatment strategies and prognostic markers. Genomic heterogeneity in TNBC has led to the relapse of tumor and cancer stem cells with higher likelihood of distal metastasis. Several studies supported the notion that miRNAs may act as oncogene or tumor suppressors in TNBC. miRNAs may function as global regulator of TNBC by targeting post transcriptional regulation of several genes involved in influencing metastatic events but the exact mechanism involved in inducing the effect is yet to be elucidated. In this review, we summarized miRNA expression which can functionally suppress metastatic cascade in TNBC by targeting epithelial to mesenchymal transition, metastatic colonization, cancer stem cells, invasion, migration and metastasis. miRNAs may appear as metastatic biomarker to predict distal reoccurrence of TNBC in lungs, brain and lymph nodes. miRNA can act as prognostic marker in metastatic TNBC thereby predicting overall survival, disease free survival and distant metastasis free survival in affected patients. The present review article is an attempt to gain an insight into repertoire of miRNA that may emerged out as an effective treatment strategy, novel biomarker of distal reoccurrence and prognostic marker in metastatic TNBC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chanjuan Zheng ◽  
Shichao Yan ◽  
Lu Lu ◽  
Hui Yao ◽  
Guangchun He ◽  
...  

Triple-negative breast cancer (TNBC) is more aggressive and has poorer prognosis compared to other subtypes of breast cancer. Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal-like cells capable of migration, invasion, and metastasis. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, could inhibit stemness properties of cancer stem cells (CSCs) derived from TNBC cell in vitro and in vivo. This study is aimed at investigating whether lovastatin inhibits TNBC CSCs by inhibiting EMT and suppressing metastasis and the mechanism involved. In the present study, we found that lovastatin dysregulated lysine succinylation of cytoskeleton-associated proteins in CSCs derived from TNBC MDA-MB-231 cell. Lovastatin inhibited EMT as demonstrated by down-regulation of the protein levels of Vimentin and Twist in MDA-MB-231 CSCs in vitro and vivo and by reversal of TGF-β1-induced morphological change in MCF10A cells. Lovastatin also inhibited the migration of MDA-MB-231 CSCs. The disruption of cytoskeleton in TNBC CSCs by lovastatin was demonstrated by the reduction of the number of pseudopodia and the relocation of F-actin cytoskeleton. Combination of lovastatin with doxorubicin synergistically inhibited liver metastasis of MDA-MB-231 CSCs. Bioinformatics analysis revealed that higher expression levels of cytoskeleton-associated genes were characteristic of TNBC and predicted survival outcomes in breast cancer patients. These data suggested that lovastatin could inhibit the EMT and metastasis of TNBC CSCs in vitro and in vivo through dysregulation of cytoskeleton-associated proteins.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


Sign in / Sign up

Export Citation Format

Share Document